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This article proposes new tools to detect the tampering of video feeds from surveillance cameras. Our pro-
posal illustrates the unique cyber-physical properties that sensor devices can leverage for their cyber-security.
While traditional attestation algorithms exchange digital challenges between devices authenticating each
other, our work instead proposes challenges that manifest physically in the field of view of the camera (e.g.,
a QR code in a display). This physical (challenge) and cyber (verification) attestation mechanism can help
protect systems even when the sensors (cameras) and actuators (a display, infrared LEDs, color light bulbs)
are compromised. In this article, we consider skillful adversaries that can capture the correct challenges (our
system is sending) and can re-create them in the response to try fooling our verification system, and we pro-
pose new algorithms to detect these powerful attackers. Also, we introduce new visual challenges that make
harder for anti-forensics attackers to succeed, and we present experimental results showing how our system
is robust against a variety of attacks ranging from naive attacks to more sophisticated anti-forensics attackers.
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1 INTRODUCTION

The integrity of video cameras is critical in a variety of sensitive settings, including the surveil-
lance of nuclear facilities to confirm countries are abiding by the Nuclear Non-Proliferation
Treaty (Tabatabai 2015), monitoring certificate vaults protecting secret keys (Goodin 2012),
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monitoring computers generating random numbers for the lottery (Goodin 2015), and surveil-
lance of electricity substations (Sheriff 2013). While cameras in these sensitive scenarios have
cryptographic authentication and integrity, if an adversary obtains the secret key of the camera or
compromises the device itself, then the adversary can send fake video footage. As the sensitivity
of usage scenarios and pervasiveness of security cameras increase, we need to protect them by
defense-in-depth mechanisms to ensure captured images are fresh and authentic.

In our earlier work, we introduced the idea of visual challenges (Valente and Cardenas 2015) as
a defense-in-depth solution for surveillance cameras: We send a visual challenge to the physical
area under surveillance and verify that the desired changes reflect in the video feed. In short, a
trusted verifier creates a new visual challenge. Then it sends the challenge to the environment
that the camera is monitoring (i.e., to a display in the field-of-view of the camera) such that the
camera captures the challenge in the video and relays it back to the verifier. The verifier—who
knows the challenge—can then check if the captured video has the challenge and thus increase
its confidence that the video is fresh and authentic. This approach works notably well in legacy
systems and other systems where we cannot change the device (camera) software or hardware,
nor receiving server (e.g., network video recorder, external video feed storage).

Visual challenges illustrate unique properties of cyber-physical systems: Physical challenges
improve the security of a digital/cyber system. At a high-level, visual challenges are motivated
by attestation (Parno 2008) and challenge-response protocols (Abadi and Needham 1994) where a
verifier sends a random challenge to a prover, and the prover replies with a message showing its
freshness and authenticity. Our approach differentiates in two ways: (1) our challenge is not digital
but physical, and (2) it is not sent to the prover itself but to the physical environment the prover
is monitoring.

One limitation in our previous work (Valente and Cardenas 2015) was that while visual chal-
lenges help identify fake footage (when the prover is a camera), a skillful adversary—who knows
the visual challenge mechanism is in place—can launch copy-paste forgery attacks to fool the de-
tection mechanism. For example, the adversary can capture the correct visual challenge and then
manipulates the video feed to insert the correct challenge onto fake image frames. In this article,
we overcome this limitation and improve our previous proposal in several ways: (1) we consider a
stronger adversary model with multimedia anti-forensics attacks, (2) we propose new defenses to
counter this powerful adversary—like the continuous change of visual challenges (e.g., via a light
bulb)—and we make harder for this powerful attacker to succeed, (3) we incorporate new types of
media to transmit new visual challenges, (4) we present a prototype for hiding the existence of our
system from the adversary (i.e., hiding visual challenges), and (5) we improve the detection rate of
replay attacks. To incorporate these changes, we propose a modular and extensible architecture in
this article.

Proposed Architecture. We present an overview of our proposed architecture in Figure 1.

Our architecture has three components: the physical environment we want to monitor, a
surveillance camera, and a trusted verifier; the physical environment contains a device that con-
stantly shows new visual challenges. In our previous works, we proposed using a digital monitor
(e.g., a small tablet, digital signage) to display visual challenges such as QR codes and random
letters (Valente and Cardenas 2015) or tweets from verified users (Valente and Cardenas 2017).
In this article, we expand the visual challenge options to include full-image challenges (using
a multi-color smart light bulb) that can change the color of the scene under surveillance, and
infrared (IR) light that is hidden from people but visible to cameras (e.g., with night vision). The
camera visually perceives the environment and has typical features from surveillance cameras,
such as the ability to change its resolution, frame rate, and the ability to select day or night vision.
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Fig. 1. Architecture overview: we extend our previous proposal (Valente and Cardenas 2015) to support new
visual challenges such as a grid pattern of IR LEDs and use multi-color smart light bulbs to change ambient
lighting, to include more robust attack-detection algorithms (e.g., forgery attack detection) and more im-
provements. The verification happens as follows: (1) the verifier creates a new visual challenge and (2) sends
to a display; (3) the camera captures video of a scenery (including the display); (4) the verifier retrieves the
next video frame and (5) verifies the challenge in the frame just received: if the verifier confirms the chal-
lenge, then it gains confidence that the camera is transmitting fresh and authentic footage. Finally, (6) the
verifier runs attack-detection algorithms.
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a camera. mechanism). and built-in cut IR filters.

Fig. 2. Setup for experiments using displays to show the visual challenge.

The trusted verifier has a visual challenge generation component (e.g., for creating a QR code
based on some random value) and then a visual challenge recognition algorithm that receives the
camera feed and detects if the visual challenge is present or not, and it uses image processing to
retrieve the encoded data (e.g., uses OCR algorithms to recognize tweet challenges). Finally, the
verifier also has attack-detection algorithms such as the ones we propose in this article. We show
the setup for our experiments in Figure 2.

Contributions. Our contributions over previous works include: (1) a refined threat model
against video tampering, (2) improved visual challenge algorithms—mainly in terms of perfor-
mance (to achieve higher visual challenge recognition) and security (to detect attacks including
replay attacks), (3) new attack detection algorithms that leverage correlations between consecu-
tive video frames (i.e., inter-frame correlations) to detect forgery attacks, (4) new visual challenges
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Fig. 3. Sequence of image frames to illustrate attack strategies. The goal of the attacker is to hide the activity
on frames 4, 5, and 6 where a student removes a book from the bookshelf. v; to v7 represent the visual
challenge.

like changing the environment color of the area under surveillance to impede copy-paste attacks, and
(5) new proposals and prototypes to hide the existence of visual challenges from adversaries. We
present experimental results and show the performance of our detection system against a variety
attacks (that we describe in Section 2).

To the best of our knowledge, previous works—that use physical challenges—do not consider
the skillful adversaries we evaluate in this article, i.e., an attacker who knows the correct chal-
lenges and how to re-create them in the response. For example, Mo and Sinopoli (Mo et al. 2014)
assume physical challenges (for control systems) are secret and hidden from the adversary (e.g., the
adversary cannot reproduce watermarks introduced in the system), and Shoukry et al. (Shoukry
et al. 2015) consider a weaker adversary that cannot intercept sensor signals and replace them with
their own fabricated responses. In this article, we explicitly assume the adversary knows the wa-
termarks and can fabricate false (but expected) responses to try fooling the verifier. The goal of
our work is to minimize the chances these powerful attacks succeed in practice.

Outline. The article is organized as follows: in Section 2, we present our threat model and
outline attacks against video feeds from surveillance cameras. We classify the proposed attacks as
(1) naive or (2) forgery attacks. In Section 3, we address the naive attacks, and then in Sections 4
and 5, we present experimental results to detect forgery attacks. In particular, we propose using
inter-frame correlations to detect copy-paste forgery attacks against our system (when the attacker
knows we are using QR codes) in Section 4. In Section 5, we introduce full-image challenges
to make forgery attacks harder to succeed against our system and to help detect stronger forgery
attacks. In Section 6, we summarize related work. Finally, we conclude our work and discuss future
research in Section 7.

2 OVERVIEW OF THREAT MODEL

We assume an attacker that has compromised a surveillance camera (or the authentication material
like secret keys used by the camera) and attempts to send fake video footage to receiving servers.
In this article, we go beyond attackers that replay old footage of the camera without taking into
account that there is a visual challenge present. We assume the attacker can see the visual challenge
(or the communication between the verifier and the display) and then tries to launch attacks that
use the correct visual challenge to fool the verifier.

We use Figure 3 to help us describe these attacks. The goal of the attacker is to hide the activity in
frames 4-6. Notice that each video frame is tagged with a visual challenge v; to v;. We can assume
each tag represents a unique visual challenge that was sent by the verifier to a display in the field-
of-view of the camera. Visual challenges can be QR codes or plain text as we proposed in (Valente
and Cardenas 2015) or social media feeds from public spaces (Valente and Cardenas 2017).

We consider the following five attacks:

(a) Attack 0: Replay attack -Figure 4(a)

(b) Attack 1: Timing attack -Figure 4(b) } Naive Attacks—Section 3
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Fig. 4. Naive attacks proposed and detected by our previous work (Valente and Cardenas 2015).
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same frame).

Fig. 5. Copy-and-paste forgery attacks: The attacker copies the current visual challenge and pastes it to
(a) a significantly different frame, (b) an old frame, or (c) a sequence of previous frames.

(c) Attack 2: Forged visual challenges using fake video -Figure 5(a)

(d) Attack 3: Forged visual challenges on old still frame -Figure 5(b) | Forgery Attacks—

(e) Attack 4: Forged visual challenges on sequence of old frames- Sections 4 and 5
Figure 5(c)

In the first attack, the attacker does not know about the visual challenge mechanism and therefore
the replay attack contains the wrong visual challenges (e.g., v; instead of vy); in the second attack,
the attacker only knows the time the verifier takes to raise an alert (and blocks the feed for the
maximum amount of time it can do so without raising the alert); and in the final three attacks, we
consider a stronger attacker that knows the visual challenge and tries to insert it in a fake video
footage to bypass the verifier (i.e., in attacks 2—4, the attacker inserts the correct visual challenges
to the video feed). We now describe the attacks in more detail.

2.1 Naive Attacks

In our previous work (Valente and Cardenas 2015), we study the effectiveness of QR code and ran-
dom letter challenges to detect two naive attacks: (1) replay attack and (2) timing attack. We provide
attack-detection statistics, and study their performance. In this article, we improve detecting these
attacks, and use the discussion to provide background information.

Attack 0: Replay Attack. This attack represents the typical Hollywood-movie attack where a
hacker taps into the video footage of a camera and replays old video footage, while the attackers
complete a heist that is not shown in the monitors of the security guards. Figure 4(a) illustrates
this attack.

We consider this attack solved by our previous work (Valente and Cardenas 2015; Valente and
Cardenas 2017), and therefore in this article, we focus on how to improve attack detection for
attacks 1-4.

Attack 1: Timing Attack. In our previous work (Valente and Cardenas 2015), we found that
waiting for a small number of frames and collecting enough evidence before making a decision
(to raise an alarm or not) gives more accurate results (reducing the false alarm rate effectively to
zero). However, if the attacker knows there is a small buffer of frames where we do not raise alerts,
then the attacker can abuse it and try to launch the attack during this buffer of frames without
raising an alert. Figure 4(b) illustrates this attack where frames 4-6 indicate when the attacker
blocks visual challenges (and use fake frames) for the (buffer) duration time we do not raise an
alert to stay undetected.
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In our previous work, the attacker could launch these undetected attacks for up to 9s. In this
article, we improve the performance of the visual challenge recognition algorithms to tolerate
fewer decoding errors and minimize the amount of time the attacker can remain undetected.

2.2 Forgery Attacks

In this article, we study forgery attacks against our visual challenge system. These attacks attempt
to forge a fake image displaying the expected visual challenge. We consider three strategies to
create forgeries: the adversary replaces current frame with a (1) random image or (2) old image
frame (and replays them while superposing the expected challenge), or the adversary replaces
current and subsequent frames with (3) image frames from an old sequence.

Attack 2: Forged Visual Challenges Using Fake Video. As suggested by Zhang et al. (2017), a
skillful attacker could bypass visual challenges: one way is to physically move or rotate the camera
(to keep it away from the target area) while at the same time adding the visual challenge in the
correct location (e.g., moving the display with the QR code, or placing a new and different display
where the verifier expect the code to appear).

Another way involves the attacker sending a fake video while still including the expected visual
challenge in the fake feed. The attacker can copy the QR code from the legitimate feed (captured
from the original camera) and paste it over a fake video before sending the video feed to the verifier.
This attack is well-known in the image/video forensics literature as a copy-paste forgery attack.
In this article, we study copy-paste attacks in the context of visual challenges, which has not been
considered before in previous related works.

These two strategies produce the same effect: a tampered video feed with the correct visual chal-
lenge. We illustrate this attack in Figure 5(a). In this article, we mitigate this attack by computing
the correlation between inter-frames of the video feed and finding discrepancies in consecutive
frames. We present a detection algorithm (using visual challenges and inter-frame correlations)
and show our experimental results.

Attack 3: Forged Visual Challenges on Old Still Frame. The attacker launches a combination
of replay and forgery attacks: the attacker maintains a copy of old frames, and during the attack,
replays a perceptually similar (to the current) frame while injecting a forged visual challenge.
Figure 5(b) illustrates this attack. If the attacker replaces the real footage with a still frame that
is similar to the legitimate frames, then the previous mitigation—focusing on finding significant
perceptible discrepancies in consecutive frames— will fail. Instead, we can successfully detect this
attack if we focus on constant changes (or no changes) between consecutive frames.

Our experiments show that even when the area under surveillance remains unchanged, the
inter-frame correlations between consecutive frames vary due to camera noise. Consequently,
when the correlations remain constant, we can effectively conclude frames are being dupli-
cated (i.e., attacker is replaying a still frame). We present experimental results to support this
observation.

Attack 4: Forged Visual Challenges on Sequence of Old Frames. This is the strongest attack
against our system: The attacker captures the correct visual challenges and inserts them into a
sequence of fake frames that are significantly correlated to previous legitimate frames. Figure 5(c)
illustrate this attack. The previous two mitigations fail, because we no longer can rely on significant
discrepancies between consecutive frames nor on constant changes. To defend against this attack,
we combine inter-frame correlations with a more robust visual challenge. Instead of changing only
a small visual cue in the field-of-view of the camera (which is the case for QR code challenges), we
propose full-image challenges that reflect in the entire scenery captured by the camera, and
show our experimental results using these challenges.
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Fig. 6. Detecting Attack 0: (a) when an attacker blindly replays old frames, the old frames will not contain
the expected visual challenge—when there is a mismatch or error we denote as “1” otherwise as “0"—as a
result the (b) cumulative error score will quickly increase beyond a threshold, raising an alarm.

Before we discuss our new attack-detection mechanisms in detail, we first present an overview
of our proposed architecture and its architectural components.

3 DETECTION OF NAIVE ATTACKS
3.1 Detection of Attack 0: Replay Attack

Although we consider the problem of detecting attack 0 solved by our previous work (Valente and
Cardenas 2015; Valente and Cardenas 2017), we briefly revisit this attack to introduce background
information about our proposal.

In our earlier work, we experimented using QR codes, random strings, or meaningful infor-
mation (such as tweets) as visual challenges. Our previous results found limitations when using
QR codes when compared to using random letters or tweets. In particular QR codes can be fully
decoded or not, so even small errors in the display or noise in the camera can prevent us from de-
coding them; in contrast, we can obtain partial information from corrupted tweets or from random
letter strings. Therefore, in our earlier work, we had more false alarms from incorrectly decoded
QR codes than from strings of letters and as such, we had lower performance with them.

In this article, we use a new method to substantially increase the decodability rate of QR codes.
We use the built-in error detection feature (Denso Wave Incorporated 2015). For instance, we use
error detection Level H feature, which means that even when 30% of the QR code has been dam-
aged, we can still restore the data encoded in the code. So even when the monitor displaying the
code or the camera capturing the video add noise, the error detection level helps us successfully
decode QR codes.

By applying this change, we saw few decodability errors in our experiments. In our experimental
results shown in Figure 6, we had only 12 errors when trying to decode QR codes from 900 image
frames with distinct challenges (when there is no attack), giving a 98.67% decodability rate. We
denote errors as “1” and every time the decoded QR code matches the expected challenge as “0”
(shown in Figure 6(a)).

Further, we show in Figure 6(a) that it is straight forward to detect replay attacks using visual
challenges: when the replay attack starts, the verifier notices a consistent mismatch of visual chal-
lenges (because the old frames being replayed contains old visual challenges). The verifier either
sees visual challenges that are not the expected ones (not the ones the verifier has been currently
sending to the display) or occasionally (but never consistently) gets a decodability error. Every time
there is a mismatch or error, the verifier increases a cumulative error score as shown in Figure 6(b).
We raise an alarm only when the errors are persistent. In our case, we keep a zero false alarm
rate when we select a threshold of 7 = 2, and this still allows us to have 100% attack-detection
rates.
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Fig. 7. lllustration of Attack 1: Attack duration depends on verification detection rate: higher rates decrease
attack duration.

3.2 Detection of Attack 1: Timing Attack

The improvements we mentioned in the previous section can already help improve the mitigation
of attack 1. Here, we provide additional insights to decrease the chances that this attack succeeds.

Recall that attack 1 takes advantage of the time the verifier takes to raise alerts. To avoid un-
necessary false alarms, the verifier does not raise an alert every time there is a decoding error in
QR codes, instead the verifier waits for subsequent verifications until it detects a consistent mis-
match of challenges. We assume the attacker knows about this small buffer of tolerance and can
abuse it by launching the attack during this particular buffer of frames, and stay undetected. Our
goal here is to minimize the total amount of time the verification might accept frames containing
undecodable QR codes.

In our previous work (Valente and Cardenas 2015), our best performance tradeoff (100% detec-
tion accuracy and minimum time delay) allowed an attacker—launching attack 1—to remain un-
detected for 9s. In this article, we improve the detection rate and camera capturing rate to maintain
100% accuracy while significantly reducing the amount of time to raise an alarm.

The duration of the attack is correlated with the detection rate, which is the frequency a verifier
runs the verification step (to check visual challenges in current frames). If the verifier only tries
to decode QR codes at every 3s, then that is also the time it takes to increase the cumulative error
score. So, when the verifier tolerates three consecutive errors to happen in the system, that sums
up to a total of 9s (i.e., the system will tolerate three fake frames with each containing a QR code
that is not decodable—on purpose by an attacker). After that, a next frame containing a bad QR
code will trigger an alert. To remain undetected and to use the full 9s, the attacker can stop the
attack before hitting the threshold (of tolerated consecutive errors) and wait until the cumulative
error score reaches zero to start a new attack.

To mitigate this attack, we increase the verification detection rate. If the verifier performs the
verification step at every second (illustrated in green in Figure 7(a)), then the verifier takes one
second to increase the cumulative error score. As a result, the attacker takes 3s (versus 9s in the
previous case) to arrive at the maximum allowed errors. If the verifier performs the verification
at each half second (illustrated in yellow), then the tolerated errors translate to a total of 1.5s of
attack time (which is substantially smaller than 9s).

In this article, we increase the detection rate to 250ms (a quarter of a second instead of 3s). Even
if we still tolerate three consecutive errors, we already decrease the attack time—to use fake frames
with no or bad QR codes and not get caught—to three fourths of a second. Since in this work we
improve the decodability rate of QR codes (now we get few false alarms and even fewer consecutive
errors), we can decrease the tolerated consecutive errors to two. As a result, we effectively decrease
the attack time to half a second while still maintaining a zero false alarm rate. We illustrate our
improvements in Figure 7(b).
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Fig. 9. Sample forged frames from our experiments. These frames illustrate attacks 2-4.

We can also increase the camera capturing rate to minimize attack 1. Our previous work con-
sidered accessing the video feed at one frame per second (fps) and updating challenges every
3s—which explains the slower verification. In our experiments, we found it is more advantageous
to use higher rates as it provides the verifier with additional frames during the verification step.

In the experiments we present in this article, our camera captures at 15fps. The verifier sends
unique visual challenges continuously at every second and performs the verification step against
each captured frame. Notice that this configuration allows multiple consecutive frames to con-
tain the same visual challenge. This leads to an attack with similar effect as attack 3: an attacker
can capture the first frame containing a new challenge and can replay that until a new challenge
appears. We mitigate this attack by calculating the inter-frame correlation as we present next.

4 DETECTION OF FORGERY ATTACKS 2 AND 3

Visual challenges such as QR codes are fragile to copy-paste attacks. As we illustrate in Figure 8, it
is trivial for an attacker—with access to the legitimate video feed—to spot where the challenge is
because the location is fixed. A skillful attacker can then copy the correct challenge and paste it to
a fake feed—before the verification step. In this section, we introduce inter-frame correlations in-
cluding perceptual hash (Weinhaus 2014) and correlation coefficient (Wang and Farid 2007) metrics
to detect this strongest attack against our detection system.

As we show later, it becomes difficult to achieve copy-paste attacks when the visual challenge
spreads out in the physical environment and therefore appears in the entire image frame (e.g., by

changing the scene lighting).

4.1 Attacks 2 and 3 Details

Figure 9 shows sample frames from our experiments. During the attack, the attacker copy-pastes
the visual challenge from the legitimate frame (shown in Figure 9(a)) to a fake frame. Recall that
attack 2 uses a fake feed that is different from the expected scene under surveillance (Figure 9(b))
and attack 3 uses an old frame (Figure 9(c)). During these attacks, the attacker keeps on repeating
the same fake frame while pasting the legitimate challenge.
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In practice, these attacks depend on the attacker’s ability to create forgeries in real-time (as the
camera is transmitting video feed to the verifier) and to possess fake or old frames. We assume the
attacker meets these requirements.

Each forged frame is then passed to the verifier as if they were the current frame. The verifier
checks the visual challenge (e.g., decodes the QR code) and finds the expected value. A naive verifier
marks the frame as containing the correct challenge but in reality, the frame was forged to include
the expected challenge. To deal with this, we complement the visual challenges verification with
a new step to check discrepancies between consecutive frames.

4.2 Using Inter-frame Correlations to Detect Copy-Paste Attacks

The intuition for using either perceptual hash or correlation coefficient metrics includes: if the
attacker uses a remarkably different video feed (in comparison to the legitimate one), then there is
a noticeable change between frames when the attack starts and ends. We also see a sudden change
in the correlation values. Further, we found that two frames are never exactly the same (because
of noises introduced by the camera). So, the opposite is also true: when multiple frames correlate
beyond an upper bound (close to classifying two frames as the same), we can detect duplicates
frames, i.e., we can spot an attacker using a same still frame—to create forgeries—and we can
detect such attack.

We classify the similarity between consecutive frames into either one of two classes depending
on the metric. For the perceptual hash metric, we classify as follows:

1, Ah> Tphash OF Ah < Tphash (1)

0, otherwise,

phash_class = {

and for the correlation coefficient metric as follows:

1, Ah < 7. or Ah > Toor
corr_class = i (2)
0, otherwise.

The first class represents when there is an attack: both when there is a sudden change (because
the attacker starts using a completely different image frame—we use threshold 7) and when con-
secutive frames are duplicated or similar enough (because the attacker is forging legitimate chal-
lenges onto a still fake frame—we use threshold 7). We use Ah to denote the correlation between
two consecutive frames. The second class represents when there is no attack.

Recall from our architecture that the verifier contains a visual challenge generation phase, a
challenge recognition phase, and the attack-detection phase (to detect forgeries in addition to
replay attacks). We refer the reader to Algorithm 1 for an overview of the steps. As we described
before, the generation phase is straight forward: the verifier V' generates random challenges (e.g.,
here, we use QR codes for illustration) and continuously sends them to a display in the field-of-view
of the camera. Now, we incorporate inter-frame correlations during the verification phase. After
verifier V certifies the current frame contains the correct visual challenge and that the response
arrived within an expected response time (line 6), then V calculates the correlation between
current frame F; and previous frame F;_; (1ine 7). If the correlation is outside the expected range
(based on Equations (1) and (2)), then we raise an alarm (1ines 8-10).

Although both perceptual hash and correlation coefficient metrics effectively detect anomalies
in our system, they work slightly different: (1) correlation coefficient classifies more coarsely (im-
ages are either highly correlated or they are not) than perceptual hash, which classifies images
as either very similar or with a score in between; (2) one calculates the similarity between two
images while the other, the difference. We provide additional information in Appendix A.
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ALGORITHM 1: Visual challenge: QR code

Verifier V uses qr-code visual challenges to verify video feed freshness of surveillance cameras.
Generation Phase

1: fori € N, do

2: ri < {alphanumeric characters}r > V generates a random string r; of length I,
3 v; « encode(r;) > V encodes r; to qr-code visual challenge v;
4: store current time t(v;)

5 send v; to digital display > 7V sends v; to a display in the field-of-view of the camera
6: wait for random time t, (v;)

7: end for

Verification Phase

1: for j € N, do
2: Fj « next image frame > V receives an image frame F; from surveillance camera
3 v] « retrieve gr-code from F; > V locates qr-code v; from image frame
4 r; < decode(v;) > V attempts to decode qr-code v;
5: store current time t’
6 if verify(r;) and (¢’ — t(v;) <= t,(v;) + &;) then > V verifies v; and expected response time
7 A§ = corr(Fj, Fj-1) > V calculates the inter-frame correlation between F; and Fj—;
8 if (AS < 17, or AS > 13;) then
9: trigger an alert > V triggers an alert if correlation is not within expected range
10: end if
11: else
12: increase cumulative error score > V keeps a cumulative error score
13: if cumError> 7e;ror then
14: trigger an alert > V triggers an alert if cumulative error score passes a threshold
15: end if
16: end if
17: end for

4.3 Experimental Results for Detecting Attacks 2 and 3

Experiment: During each try, we let the camera capture 900 frames. We then forge frames (e.g.,
F, through F,.,) to contain the expected visual challenge. We create our forgeries in MATLAB. First,
we create two image arrays: one for the visual challenge (by deleting—in the legitimate frame—
the regions outside the challenge); and another for the fake frame (we delete the region where
the visual challenge will appear). Then, we perform the plus element-wise binary operation in
MATLAB to combine the two image arrays and create the forged image.

Then, we run the verification phase: V calculates the correlation between consecutive frames.
We run our algorithm using the perceptual hash difference and then the correlation coefficient.
First for attack 2, and then for attack 3. We plot the outcome values, and show our results next.

Attack 2: Recall that attack 2 uses a completely different image frame (during the attack). So,
when we use either perceptual hash or the correlation coefficient, we can notice a dramatic change
in the values.

Figure 10(a) shows our results when using the perceptual hash metric. Figure 10(a) (left) shows
a clear spike when the attack starts and when it ends. So, we can raise an alarm every time Ad
is larger than, for instance, 10. Notice that if we zoom-out the plot (the little box), the perceptual
hash difference values exceed 100 when the attacker starts and stops using a fake frame. We can
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Fig. 10. Detecting attack 2: We calculate the perceptual hash (left) and correlation coefficient (right) between
consecutive frames.

correctly classify these sudden changes if we use threshold 7,p.5,=149.64. This threshold does not
raise any false alarms. Now for the attack duration, we can notice the perceptual hash values stay
close to 0. We can see this more clearly in Figure 10(a) (right). When we zoom-in via the y-axis
(using ranges [—.002, .01]), we notice that the correlations have higher precision. Then when there
is no attack, these values vary more and are farther from 0.

Figure 10(b) shows our results when using the correlation coefficient metrics. Our results are
similar to when using the perceptual hash metric: We can detect when the attack starts and ends,
and the duration of the attack. We again see a sudden change in the correlations. As we show in
Figure 10(b) (left), while the correlation between two legitimate frames is never below 0.9, the cor-
relation when the attack starts (and ends) is below 0.2. We classify these sudden changes correctly
without raising any false alarm when we use threshold 7,,,=.2377. Also, when we zoom-in this
plot, we clearly see a change in the correlations during the attack. We show this in Figure 10(b)
(right). These values remain close to 1, which is different than what they were before and after the
attack.

Notice that during the verification phase, V will immediately raise an alarm when attack 2
begins. Since V constantly checks the correlation between the current and previous frame, to see
if they are below or above a threshold using <A5 < 150 Or AS > Thi), then V keeps on triggering
an alarm until the attack ends.

Attack 3: Recall that attack 3 forges the visual challenge to an old frame. This means the corre-
lation between a forged frame and a legitimate one may be similar to the correlation between two
legitimate frames. So unlike attack 2, we may not see a sudden change when the attack starts and
ends.

Figure 11(a) shows our results when using the perceptual hash metric. Now, we do not see two
large spikes in the perceptual hash difference value. However, we can see when the attack is taking
place: notice the correlations in Figure 11(a) (left) where we labeled as attack duration. These values
stay close to 0 and are consistent (except for a small spike, perhaps indicating when 9V sends a
new challenge). When we zoom in this plot via the y-axis, we see more clearly the inter-frame
correlations during the attack stay much closer to 0 than when there is no attack. We show this in
Figure 11(a) (right). The correlations are also constant and have higher precision than before/after
attack. We can effectively classify the attack using Ah < Tppes, from Equation (1).

Figure 11(b) shows our results when using the correlation coefficient metrics. In Figure 11(b)
(left), although we can see several spikes, we cannot clearly notice where the attack is taking
place, unless we zoom in this plot. We show that in Figure 11(b) (right). Like perceptual hash, we
can still notice a change in the correlation values during the attack. We classify the attack with
Ah > T, from Equation (2).
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To evaluate our binary classifier system, we show receiver operating characteristic (ROC) curves
in Figure 12. The ROC curves show the performance of our binary classifier system against dif-
ferent thresholds for Tppesn and 7o These thresholds help us notice correlations that are constant
(indicating when attack 2 or 3 is taking place). In Figure 13, we show the same results, but we
present based on attack type. Based on our experimental results, we conclude that both the per-
ceptual hash and the correlation coefficient metrics are effective to detect attack 2 and 3.

5 DETECTION OF FORGERY ATTACK 4

The mitigations we proposed so far cannot detect attack 4. Since the attack pastes visual challenges
to a sequence of old frames, then, we can no longer rely on (1) significant discrepancies nor on
(2) persistent constant/or no changes between consecutive frames. Unlike attacks 2 or 3, there are
no sudden changes when attack 4 starts nor the attack uses repeated fake frames. In this section, we
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(a) top view (b) camera perspective

Fig. 14. Setup for experiments using a tablet displaying visual challenges (in this case a QR code) and a smart
light bulb to constantly change the scenery ambient color. Here the color is cyan. [Note: images contain
color.]

Fig. 15. lllustration of changing the ambient lighting using a smart light bulb with a color palette of over
16 million colors. The attacker would need to copy the QR code challenge from the current frame and paste
to an old frame that matches the expected color challenge. Simply matching the color is not enough, because
the frame must also be highly correlated. [Note: image contains color.]

combine inter-frame correlations with a more robust visual challenge—that reflects in the whole
image frame and not only on a small portion—to defend against attack 4.

5.1 Introducing Full-lmage Visual Challenges

We propose adding a visual challenge in the form of changing the ambient color lighting (of the
area under surveillance). The verifier controls the physical environment color lighting and verifies
whether the changes reflect in the video feed. In our experiments, we use a smart light bulb that
can transmit over 16 million colors. We show our setup in Figure 14. In Figure 14(a), we show the
smart light bulb reflecting the color cyan, and in Figure 14(b), we show the perspective from the
camera. As we can see in these RGB figures, the color cyan reflects in the scenery the camera is
monitoring.

The color lighting also reflects in the video feed. Unlike QR codes that appear in a small area,
color lighting overlays the entire image frame. For the remainder of the article, we refer to this new
visual challenge as full-image challenge. We show sample image frames from our experiments
in Figure 15. Notice the colors in each frame are due to changes in the physical environment,
not by editing each frame with a color filter. We label the frames with respective color names for
clarification. As we show in our experiments later, we found it is not trivial for an attacker to
recreate these “color filters” into a fake frame to fool the verification.

Algorithm 2 outlines the steps to create full-image challenges. The generation phase is
straight forward: V' chooses a random color (e.g., RGB value for cyan: (0, 255, 255)) as the
next visual challenge (1ine 2), and changes the smart light bulb to that color (1ine 4).V contin-
uously repeats this process.

Assumptions and Limitations. We can either use full-image challenges by themselves or
to complement other challenges. In our experiments, we use them to complement QR codes and
mitigate attack 4.

Changing the lighting color of a physical environment can be intrusive when compared to other
proposed challenges such as QR codes, random text, or tweets likely present in public spaces.
Under certain scenarios (e.g., entrance to a nuclear enrichment facility that is empty most of the
time), it might be acceptable to change the environment color, whereas it will not be suitable for
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Fig. 16. Attack 4: Illustration of attack 4 using ambient color lighting. When the attack starts, the attacker
(1) selects a sequence of old frames with the same color as the current legitimate frames, (2) extracts the cur-
rent correct challenges, and (3) pastes the correct challenges to the old frames. [Note: image contains color.]

ALGORITHM 2: Full-Image Challenge

Verifier V modifies ambient lighting (in the area under surveillance) and thwarts copy-paste attacks on the
video feed.
Generation Phase

1: fori € N, do

2 ¢; « {cy € Color} > V picks a random color ¢, = {R,, G, B, } and assigns to ¢;
3 store current time ¢;

4: send c; to light bulb > V sends c; to a smart light bulb near the camera
5 wait for random time #]

6: end for

other settings such as the entrance of a crowded apartment building. To make color challenges
more discreet it is possible to quickly alternate between opposite colors to simulate the lack of
color in the environment and cancel out the colors—the camera would still capture the colors, but
it would be less noticeable in the physical environment. Another possibility is to completely hide
the visual challenge as we describe later.

5.2 Attack 4 Implementation Details

Recall attack 4 captures the correct visual challenges (e.g., QR code) and inserts them to a sequence
of fake frames—significantly correlated to the legitimate frames—such as old frames. The lighting
introduced in the physical environment forces the attacker to choose a sequence that contains the
expected color. To make the attack harder to succeed, the verifier constantly changes the light
bulb color. This forces the attacker to use a different sequence of old frames every time the color
changes.

We illustrate this attack in Figure 16: The attacker forges visual challenges to a sequence of old
frames with color yellow (e.g., c1), then of color blue (c3) and green (cz). Notice that a less re-
sourceful attacker may attempt to reuse a single frame until the color changes instead of a sequence
(e.g., reuse a single yellow frame until the color changes, then reuse one blue frame, etc.). Such
attack gives us similar effect as attacks 2 and 3, and we consider them solved.

The attacker cannot trivially copy-paste full-image challenges as they would with QR codes.
The attacker needs to craft their attack more intelligently: first, detect the overall color of the
legitimate frame (the attacker wants to replace) and then, find an old sequence matching the
expected color.
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Algorithm 3 describes generic steps for the attack. During each step, attacker A detects the
color of the current frame F, (1ine 3) using their own trained classifier (Line 4). Then, attacker
A finds an old frame F, most correlated to F. and with expected color (1ine 5) to create the
forged frame (1ine 6).

Recall the attacker wants to also select frames with acceptable inter-frame correlation values
(so our previous mitigations fail). To ensure this, once the attacker finds a good old frame F,
the attacker can use subsequent frames (e.g., Fx41, Fx+2) for the next fake frames. This strategy
works while subsequent frames contain the expected color, otherwise the verifier detects a color
mismatch. Recall verifier V' constantly selects a new random color—unknown to attacker—every
random time t!. This forces the attacker to keep history of multiple sequences of old frames: a
sequence for each expected color. When we revisit Figure 16, we notice that although the attacker
picks an old frame with (1) matching color and then (2) subsequent frames, we can see interrup-
tions in the sequence of frames. For example, between legitimate and/or fake frames tagged with
visual challenge pairs: (vs, vg), (v10, V11), (V12, v13), and (v13, v14). Their inter-frame correlations
reveal breaks in the sequence. As we show later in our results, this enables us to detect the at-
tack. To maximize detection and minimize the attack, verifier V' can update color challenges more
frequently.

ALGORITHM 3: Attack: Ambient Lighting

Attacker A modifies video feed with same color lighting and high correlated frames.
Generic Attack

1: while copy-paste attack do

2: F. < next current image frame > A intercepts the current frame F. from surveillance camera
3: {R, G, B} « attackDetectColor(F.) > A runs own algorithm to detect overall frame color
4 cq < attackPredictLabel({R,G,B}) > A usesown trained classifier and predicts a color label ¢
5 Fy < argmaxp_coldrrames f (¥) = corr(Fe, Fx) > A finds an old frame of color ¢, most correlated

to F.

6: Fq « forge(Fx, F¢) > A copies visual challenge from F. and pastes to Fy
7: replace current frame with forged frame F, > A replaces current frame with forged frame F,

8: end while

In our experiments, we show that even when the attacker chooses old sequence of frames with
the same color lighting, their correlation with the previous frame is significant enough to reveal
the attack.

5.3 Using Inter-frame Correlations to Detect Attack 4

We now describe our verification for when we use full-image challenges. We refer the reader
to Algorithm 4, for the overall steps. Once verifier V receives the next image frame, V recognizes
the overall color in the frame and predicts a color label (1ines 3-4), and then verifies whether
the predicted color matches the expected one (line 6). Once V verifies the frame contains the
correct color and that the response arrived within an expected response time, then V calculates the
correlation between current frame F; and previous frame F;_; (1ine 7). As we did in the previous
mitigations, we use either perceptual hash difference or correlation coefficient. If the correlation
is outside an expected range, then we raise an alarm (1ine 9).

Since we assume the attacker does not repeat fake frames, then we cannot rely on constant
changes in the correlation value. So, we use only parts of Equations (1) and (2): namely, Ah > 7,441
or Ah < 7.y, depending on the metric.
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Fig. 17. Detecting attack 4 using: (a) perceptual hash and (b) correlation coefficient metrics. We show their
performance in panel (c).

ALGORITHM 4: Full-Image Challenge

Verifier V modifies ambient lighting (in the area under surveillance) and thwarts copy-paste attacks on the
video feed.

Verification Phase

1: forj € N, do

2: Fj < next image frame > YV receives an image frame F; from surveillance camera
3: {Rj,Gj, Bj} « detectColor(Fj) > V detects the overall color (i.e., RGB values) from frame F;
4 c; « predictLabel({Rj,Gj,B;j}) > V uses a classifier (previously trained) to predict color label
¢l

5: store current time ¢’

6: if verify(c;,t’) then > V verifies perceived color ¢; and if response is within expected time
7: A$ = corr(Fj, Fj_1) > V calculates the inter-frame correlation between F; and Fj_;
8: if (AS is not within expected value) then

9: trigger an alert > V alerts if correlation is outside range (for expected color)
10: end if
11: else
12: trigger an alert > V triggers an alert if classified color (from perceived frame) is incorrect
13: end if
14: end for

5.4 [Experimental Results for Detecting Attack 4

Experiment: During each try, we capture frames while our verifier V' code updates full-image
challenges. This enables us to have old frames in varied colors to later create the attacks. In
our experiments we use: red, green, blue, cyan, magenta, and yellow. We then let the camera
capture 900 frames, and we forge frames F, through F,,,. We create our forgeries in MATLAB: first,
we recognize the legitimate frame color (we train a multiclass Naive Bayes classifier using fitcnb
and predict a color label), and select an old fake frame F, containing the same color. Then, we
replace subsequent legitimate frames with frames succeeding F, such as Fy1, Fx42, and so on.
When the color challenge changes, we select a new sequence of old fake frames matching the new
color.

Then, we run the verification phase from Algorithm 4. First, using the perceptual hash difference,
and then the correlation coefficient. We plot each A outcome value, and show our results next.

Figure 17(a) shows our results when using perceptual hash difference. Recall the attacker is
forced to pick a new sequence of old frames each time V' changes the color challenge. The red
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Fig. 18. Attack 4: We study two strategies for the attack. (1) Both the fake frame and previous legitimate
frame have the same color challenge, and (2) the attack starts when there is a color change such that the
legitimate and fake frames do not share the same color.

dots denote the perceptual hash difference during these changes in color challenge. Figure 17(b)
shows our results when using the correlation coefficient metric. Again, the red dots denote when
the attacker picks a new sequence of old frames. Differently from perceptual hash, we can see a
consistent change in the correlation values every time V' updates the color challenge—the cor-
relation values are smaller than (1) before/after the attack and (2) while the attacker leverages
consecutive frames of the same color. To maximize detection, V' can update color challenges more
frequently, so we see more of these red dots. In Figure 17(b), we show the performance of our
binary classifier system against different thresholds for Ah > 7,45, and Ah < 7,y Notice the cor-
relation coefficient metric performs better than the perceptual hash difference metric to detect
attack 4.

Additional Experiments. To conclude our experiments, we study in depth the correlation between
a legitimate frame (the attacker wants to forge) and a fake old frame. We show it is difficult for an
attacker to find a good fake old frame (of the expected color) to bypass our verification while our
detection actively sends full-image challenges.

We consider two strategies to start the attack: (1) the fake old frame and previous (legitimate)
frame have the same color challenge, and (2) the attack starts when there is a color change (i.e., the
legitimate and fake frames do not share the same color). Figure 18 illustrates these two strategies.
Our results show it is not trivial for an attacker to find old frames that are correlated enough with
the expected current frame—even when the fake frame shares the same color and similar scenery
with the previous legitimate frame—to successfully bypass our verification. Notice these strategies
also describe the end of the attack. The last forged frame may be of the same or distinct color as
the next legitimate frame.

Strategy 1 to start/end attack 4. For our experiments, we let the camera capture 900 frames.
We then select frames F, through F,; to forge. Instead of simply selecting an old frame for the
forgery, we calculate the correlation between F,_; (frame before attack starts) and each old frames
of matching color. During each run, we use 15-20 old frames that we captured 15min prior while
the scenery stayed unchanged. So, we have a total of 15-20 correlation values. In these experi-
ments, we use the correlation coefficient metric, because as we saw it performs better for attack 4.

We keep record of the biggest correlation found (best-case scenario for the attacker), the smallest
correlation (worst case scenario), the average between all computed correlations, and the expected
correlation (when there is no attack).

Then, we select F, as the attack start, and repeat this process until F,,;. As a result, we keep on
selecting a new place to start the attack, while calculating the correlation between the new position
and old frames. Figure 19 shows our results for color challenge blue. The blue (top) dots represent
each new attack start. Notice the expected correlations (solid lines) are significantly larger than
best-case correlations for the attacker (to find a good old frame to start/end attack 4).
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Fig. 19. Attack 4: We show the best-case/average/worst case scenarios to start attack 4 in various time
periods.
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Fig. 20. Attack 4—Attacker needs to find an old frame that has the same ambient lighting and is highly
correlated with the previous frame (accepted by the verifier). Our results show that this is not trivial, since
best-case scenarios are lower than expected values.
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Fig. 21. Attack 4—In our experiments, we analyzed the correlations during color transition, and simulated
attacks were the attacker uses the corresponding transition pattern (i.e., magenta to cyan) to launch the
attack. We found that it is possible to see spikes when the attack begins and ends, even when the attacker
chooses old frames that follow the same transition.

Figure 20 shows our results for color challenges: yellow, green, blue, and magenta. We calculate
the average for the best case/average/worst case scenarios—per color—to start attack 4. Although
the average correlations may vary according to the color challenge, our results show that the best-
case scenario (for the attacker) is smaller than the expected correlation and not good enough to
remain undetected. This means we can notice a decrease in the correlation value when the attack
starts (even when they pick the most correlated frame), and detect the attack.

Strategy 2 to start/end attack 4. Now, we focus on when the attack starts during a transition
between two color challenges. For example, the verifier sends challenges of color: magenta and
then cyan, or green and then blue. We assume the attacker has captured sequences of these same
color transitions. When the attacker sees a blue color challenge changing to green, the attacker
will select an old green frame that was transitioned from blue. We consider transitions because
intermediate frame (between two color challenges) undergo different color transformation. In Fig-
ure 21, we show what happens when the attacker tries to use old frames to launch the attack.
Here both figures show the transition between two colors: magenta to cyan, and green to blue.
We capture multiple sequences for each color transition, and graph what those transitions look
like with no attack. Then, we select old frames containing the same color transitions and start the
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attack (after the last frame of the first color appears). We compare the correlation between the last
magenta frame and first cyan frame (from an old transition sequence), and we keep calculating the
correlation between consecutive frames from the old sequence. Then, we calculate the correlation
between last fake cyan frame and first cyan frame after attack (like strategy 1). We clearly see a
drop in the correlation values. As a result, we can detect when the attack starts and ends.

Our results show that full-image challenges difficult a skillful attacker to be successful. It
forces the attacker to use frames with expected “color filter.” Moreover, it is not trivial for the
attacker to find an old frame with matching color challenge good enough to bypass our verification.
As a result, we can mitigate attack 4 using full-image challenges.

Discussions. A common practice in security includes: to select the appropriate security mech-
anism to protect a system will depend on a trade-off between the sensitivity of the application we
want to protect versus the added costs, challenges associated with the security protection. If we
want to protect the video feed of cameras in sensitive settings (e.g., surveillance cameras monitor-
ing computers that generate cryptographic keys) and the room is an area that has very few people
entering the room, then we can go for the more invasive security protections against the strongest
adversary (e.g., our proposal in Section 5); in contrast, if we have lower sensitivity applications,
then we can assume weaker adversaries and deploy security protections that minimize any draw-
back (e.g., our proposal in Section 3). To consider this trade-off, we deliberately proposed a modular
and extensible architecture (recall architecture in Figure 1) that allows customizable deployment:
e.g., we can (1) deploy our system in settings of various levels of sensitivity, (2) defend against in-
creasingly levels of adversaries, and also (3) take in consideration usability concerns. Note that this
architecture allows us to deploy separate types of media to the physical environment (to transmit
visual challenges), so, the visual challenges we can use in our defenses will depend on each par-
ticular deployment. For example, a deployment using a standard digital monitor may use QR code
and/or random text (or tweet) challenges; a deployment containing a smart light bulb may use
full-image challenges; and a deployment with infrared LEDs integrated in the environment
may use IR-challenges. Although we consider these decisions to be implementation details, in
this article, we present experimental results showing how we can use various visual challenges to
protect against naive and forgery attacks.

6 RELATED WORK

Video Forensics. Recent efforts in video forensic analysis can be broadly classified in two cat-
egories: (a) methods exposing naive attacks, and (b) methods revealing anti-forensic attacks.
Most previous forensic attack-detection tools are designed against naive attacks such as delet-
ing/inserting frames, duplicating complete frames, and replacing frames with different frames
captured using other camera.

Assuming Naive Attacks. We categorize existing forensic approaches to expose naive attacks
in four classes:

Class 1: Detecting deletion/insertion of frames. Wang and Farid (2006) propose one of the initial
video forensic approaches. Their approach relies on group-of-pictures (GOPs)! structure variation
in MPEG recompressions: when video is re-compressed after inserting or deleting a set of video
frames, the GOP structure gets distorted. In an unaltered video, -frames in a GOP are generally

1GOP is a collection of successive image frames and contains image types such as an 7 -frame (a complete image frame and
first frame of a GOP sequence) and #-frames (an incomplete frame containing only the changes from the previous frame, e.g.,
color changes and content modifications). Image frames are grouped in GOPs of a particular size, and a compressed video
stream consists of successive GOPs. We refer the reader to Haskell et al. (1996); Marshall (2011) for additional background
information.
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correlated with the initial 7 -frame in the same GOP. However, when frames are deleted or inserted,
some P-frames move from one GOP to another GOP after re-compression. Hence, their correlation
with the initial 7 -frame of the current GOP is smaller, resulting in larger prediction errors. Since
Wang and Farid assume a fixed GOP size, deleting frames result in a constant shift of #-frames
throughout the video and #-frames prediction errors exhibiting a periodic behavior—which we
observe through Fourier analysis. Limitations: this approach requires human inspection (of -
frames prediction errors), and is susceptible to human errors (Stamm et al. 2012).

Gironi et al. (2014) also suggest a video forensic technique to detect frame insertion and dele-
tion. Their approach focuses on video encoding compression. An encoder divides a frame in mac-
roblocks (MBs) and encodes them separately as: (1) 7-MBs (encodes without temporal prediction),
(2) P-MBs (encodes in reference to other frames), or (3) S-MBs (copies directly from a previous
frame). Gironi et al. then define a variation of prediction footprint (VPF) based on the number of
7 -MBs and S-MBs. The variation is denoted by the v(n) signal. The authors rely on the autocorre-
lation of v(n) to identify periodicity in the signal and expose forgeries.

In our work, since we constantly send visual challenges to the physical environment the camera
is monitoring, if we do not see a sequence of challenges we sent—because frames were deleted—
then we can detect the deletion. To insert extra frames, the attacker needs to fabricate visual chal-
lenges or reuse previously sent challenges. As we show in this article, we can detect when an
attacker adds an incorrect challenge or copy-paste a legitimate challenge to a fake frame.

Class 2: Detecting duplication of frames. Wang and Farid (2007) propose a forensic technique
to identify frame duplication (also referred as “inter-frame copy-move attack”) in a stored video
offline. This method works in two stages: first, it divides a video sequence into a number of over-
lapping sub-sequences with a shift of one frame. Their approach computes: (1) the temporal cor-
relation between each frame to form a correlation matrix T; for each sub-sequence, and (2) the
correlation between all possible sub-sequence combinations. In the second stage, they divide each
video frame to m non-overlapping blocks. Last, they compute the block-wise correlation between
frames—of the same index—in different sequences (e.g., tenth frame from two sub-sequences). If
the correlation values are higher than a threshold, then they classify the video sequence as having
duplicates frames.

Yang et al. (2016) also propose a method for detecting frame duplication in videos offline. Their
approach is based on feature similarity. It divides a video into over-lapping (by one frame) sub-
sequences. Next, it computes the singular value decomposition (SVD) features for each frame and
computes their distance to the SVD features of the first frame. Their approach then computes the
correlation between the distance and each sub-sequence combination to form a correlation matrix.
Two sub-sequences with a high correlation are classified as duplicates.

Our work is similar in the sense that we also calculate the correlation between successive image
frames. However, it is different because our verification is active and takes place online while the
camera streams the current video. Further, we do not calculate the correlation between a current
frame and all old frames from a subset (to detect duplicates). Instead, we focus only on the corre-
lation between consecutive frames, because (1) we assume the attacker repeatably uses duplicate
frames (not sporadically) during attacks 2 and 3 while copying-pasting the expected challenge and
(2) we can detect attack 4—which duplicates old sequences of frames—by constantly changing color
challenges and noticing correlation discrepancies. Last, calculating the correlation of consecutive
frames is less computational expensive than calculating the combination of multiple frames.

Class 3: Detecting camera source. Mondaini et al. (2007) propose a method to identify whether
all frames in a video stream were captured with the same camera. They also propose to use photo
response non-uniformity (PRNU) noise to detect forgeries in the video. First, they use a few of the
video frames to determine a characteristic PRNU pattern that corresponds to the camera. Then,
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they calculate three correlation coefficients: (1) correlation between PRNU noise pattern of each
frame with the reference frame, (2) correlation between PRNU noise pattern of consecutive frames,
and (3) correlation between consecutive frames. Then, they use a combination of the correlation
coeflicient values to determine video doctoring. Their approach identifies when a frame is taken
with a different camera and is malevolently inserted to a video feed. Their method continues to
work for compressed videos (e.g., MPEG compression).

Class 4: Detecting double quantization. Wang and Farid (2009) propose using double quantiza-
tion to expose forgeries offline. Typically, when we decode, edit, or re-compress a video sequence,
we introduce special artifacts in the 7 -frame coefficients—which can be used to detect forgeries.
Wang and Farid first model single compressed de-quantized coefficients as a standard Gaussian
distribution in 7 -frames. Then, they use the expectation-maximization (EM) algorithm to estimate
and compare distribution probability for doubly quantized macroblock (MB) with the original dis-
tribution of the coefficients. Finally, their approach reveals localized tampering in regions as small
as 16x16 pixels. Their detection is highly effective when the ratio between the first and second
quantization is greater than a threshold.

Assuming Anti-forensic attacks. Most works in video forensics focus on detecting naive
forgery attacks. They do not consider that the attacker may use anti-forensic operations to remove
evidence of the forgeries. There are a few works in the literature that study anti-forensic methods.
We present them next:

Among the initial efforts, Stamm and Liu (2011) propose an anti-forensic approach to deceive
the forensic algorithm proposed by (Wang and Farid 2006)—which uses motion errors (introduced
by changes in the GOP structure) to expose forgery. Stamm and Liu suggest that after an attacker
performs the forgery, then (1) we can compute a maximum prediction error, and (2) during re-
encoding, we can select a motion vector so the prediction error increases for all frames. As a
result, the forgery is indistinguishable for the algorithm proposed in Wang and Farid (2006).

In their later work, Stamm et al. (2012) propose a method to expose traces of the anti-forensic
attack described earlier. In general, a video encoder tries to minimize the prediction error. So,
the computed motion vector reflects the motion in the scene. However, the anti-forensic approach
described before selects motion vectors such that the prediction error increases. Stamm et al. point
out that the mismatch between the motion vectors—used by the anti-forensic approach and in the
scene—expose the anti-forensic attack.

Kang et al. (2016) improve previous approaches based on periodicity of P-frame prediction error
(e.g., improve false positive rates). Further, they propose a counter anti-forensics attack against the
work by Stamm and Liu (2011). Kang et al. show that when a video is re-compressed with (1) stan-
dard motion estimate and (2) motion compensation, then they can restore footprints removed by
an anti-forensics attacker. As a result, they can expose the anti-forensic attack proposed by Stamm
and Liu (2011).

Our proposal is complementary to all other proposals on video forensics. It can be used in combi-
nation with them to help us identify attacks, but in addition, our proposal is the only one providing
strong freshness guarantees. One advantage of using visual challenges (as opposed to previous ap-
proaches in video forensics that might want to detect duplicate frames or copy-move attacks in
video files), is that we can increase our confidence about the freshness and authenticity of a video
feed. Using visual challenges is an active effort, and thus we can use them to verify liveness prop-
erties in video feeds, whereas passive approaches cannot introduce changes in a scenery while the
video is being captured—they usually only have the end product (i.e., video file) when checking
for video tampering.
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(a) Standard display (b) Hidden infrared display (c) Integrated IR LEDs (on) (d) Integrated IR LEDs (off)

Fig. 22. Options for integrating challenge devices.

7 DISCUSSION AND CONCLUSION

Our work in this article focuses on the very powerful anti-forensic attacker that has been shown to
have success in previous work on video forensics. Our approaches using full-image challenges
can also provide stronger guarantees for detecting video tampering by attackers and make launch-
ing successful attacks much harder than the current state-of-the-art in video forensics.

The attacks we consider in this article assume the attacker knows that the defender is using
visual challenges. Sending QR codes or random letters to a display as previously proposed (or even
changing the color of the environment as we propose in this article) is a fairly conspicuous way to
send visual challenges. Not only they might annoy people nearby, but they also can be noticeable to
an attacker doing reconnaissance—of a potential target—to identify whether a camera is leveraging
visual challenges to protect its video footage.

In future work, we plan to explore approaches to minimize the chances the adversary will know
that the defender is using visual challenges. We illustrate this concept in Figure 22. One approach is
to use infrared (IR) light to create and display the visual challenges (Figure 22(a)). We refer to these
challenges as IR-challenges. We can also place the device (displaying IR-challenges) behind a
filter—which allows infrared light to pass through while blocking visible light. This conceals the
challenge from human eyes. We can devise to integrate the filter and display in the environment as
if they were part of it. For example, we can run a strip of opaque glass along a portion of a wall while
behind one section, we have a matrix of infrared LEDs displaying IR-challenges (Figure 22(b)).
Moreover, we can expand the matrix of infrared LEDs in size to integrate a larger area in the scene
under surveillance—to assist preventing copy-paste attacks. Ultimately, we can expand the matrix
to cover an entire wall, as needed. The LED matrix can be further recessed behind holes in the wall
and placed behind glass panes (Figures 22(c) and 22(d)). In this way, the background of the scene
(under monitoring) can become the device displaying the challenge.

To initiate research in this direction, we constructed a LED matrix (Patel 2015). Instead of using
visible light LEDs, we used infrared LEDs operating at 940nm. This wavelength renders LEDs invis-
ible to the human eye while still maintaining visibility with infrared sensitive cameras. We show
our prototype in Figure 23.

We use an Arduino UNO R3 and Raspberry Pi Zero W to control our infrared LED matrix. The
Arduino controls the matrix directly while the Raspberry Pi sends the IR-challenges to the Ar-
duino. The Raspberry device sends the challenges as an array of bytes corresponding to a raw
binary pattern to display in the IR LED matrix. Meanwhile, the verification code is running on a
laptop, as we show in Figure 23(a). We use a Raspberry Pi camera—with no IR filter—for our exper-
iments with IR-challenges (Figure 23(b)). Figure 23(c) shows what people see when looking at
our infrared LED display, and Figure 23(d)—captured by our Raspberry Pi camera—shows what the
camera sees. In our prototype, the infrared LEDs are still fairly noticeable: people can see the LED
matrix (although they cannot see that it is on and displaying visual challenges). Nonetheless, recall
that a real-world implementation of our idea (as we illustrate in Figure 22) can hide the infrared

ACM Transactions on Cyber-Physical Systems, Vol. 3, No. 3, Article 34. Publication date: August 2019.



34:24 J. Valente et al.

(a) Verifier sends IR- challenges to our (b) Raspberry Pi cam- (c) People cannot (d) Cameras sensitive to

LED matrix. Night-vision cameras can per- era with no IR filter (i.e., see the challenge in infrared can see IR vi-
ceive the IR-challenges. night vision module). the IR LED board. sual challenges.

Fig. 23. Our prototype for hiding visual challenges from human eyes.
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Fig. 24. (a) Sample image frames. (b) We use phash (left) and corr (right) to calculate difference/similarity
among sample frames.

emitters from the view of people nearby. We plan to continue this line of work in the future—to
balance the convenience of unobtrusive visual challenges, with the security guarantees that they
provide.

A APPENDIX

Perceptual hash vs. correlation coefficient comparison. To compare the performance be-
tween perceptual hash difference (phash) and correlation coefficient (corr) metrics, we calculated
the phash and corr values among nine sample images. We show our sample images in Figure 24(a).
We considered the sample images under various resolutions (e.g., 480p, 720p, 1080p). Since the re-
sults are similar, we show our results for when using sample images of 720p.

We show our results in Figure 24(b). The x-axis represents each sample image, as we label with
the image name (e.g., 1lab-0a.png, 1ab-0b. png). The y-axis shows the phash (left) and corr values
(right) between the image labeled in the x-axis against the sample images (shown by each legend
symbol).

These plots show that similar images (e.g., lab-0a and 1ab-0b) have a low phash difference
score (e.g., phash < 20) and high corr similarity score (e.g., corr ~= 1). Further, these plots show
that images that are different (e.g., 1ab-0a and 1ab-2) have a higher difference score (e.g., phash >
200) and extremely low correlation score (e.g., corr ~= 0). We omit our results comparing sample
images with images with all black (solid-b.png) and white pixels (solid-w.png). Their phash
values were significantly larger (phash > 2,000) while corr values were equal to constant NaN (not
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a number)—since there is no variation in all-black/white frames, the calculation simplified to zero
divide by zero (i.e., NaN).

Our results show us that: (1) the correlation coefficient metric classifies more coarsely than the
perceptual hash difference metric—similar images have a high correlation value, while everything
else has corr close to 0. Unlike phash, (2) correlation coefficients reveal information about the
frame rate (fps) used when capturing the video feed. By plotting the corr values, we can see
periodic spikes revealing what frame rate the camera uses (e.g., whether the camera uses 15, 30,
or 90fps). Notice that we can incorporate this information to detect further discrepancies in the
sequence of frames to identify forgeries. Finally, (3) corr is faster than phash. It takes on average
29.04 ms to calculate corr between two images while 1.22s to compute the phash value between
two images. We recommend corr over phash.
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