

The Secret Life of IoT Devices: A Security Analysis

Junia Valente, Alvaro A. Cardenas | The University of Texas at Dallas

Introduction

We analyze over a dozen of Internet of Things (IoT) devices, and summarize vulnerabilities we found on them:

- (1) encryption problems on a smart toy,
- (2) filesystem misconfigurations on consumer drones, and
- (3) hard-coded passwords on camera firmware.

We show proof-of-concept attacks and techniques we used.

<u>Note</u>: We reported the vulnerabilities we found to CERT/CC & affected vendors following a responsible disclosure approach.

Figure 2. Our proposed steps to perform vulnerability assessment on IoT devices.

Figure 1. Example of consumer IoT devices we have in our lab.

Security Analysis of Security Cameras

DECIMAL	HEXADECIMAL	DESCRIPTION
36989	0×907D	Certificate in DER format (x509 v3), header length: 4, sequence length: 1280
90812	0x162BC	CRC32 polynomial table, little endian
174741	0x2AA95	Certificate in DER format (x509 v3), header length: 4, sequence length: 1280
258124	0x3F04C	CRC32 polynomial table, little endian
425248	0x67D20	uImage header, header size: 64 bytes, header CRC: 0x73D9C2E7, created: 2014-12-0
06:37:01,	image size: 28237	08 bytes, Data Address: 0x80008000, Entry Point: 0x80008000, data CRC: 0xD6E9FF38,
•	-	type: OS Kernel Image, compression type: none, image name: "Linux–2.6.37"
442003	0x6BE93	gzip compressed data, maximum compression, from Unix, last modified; []
3249020	0x31937C	CramFS filesystem, little endian, size: 8597504 version 2 sorted dirs CRC []

In this poster, we focus our discussions to:

- (1) firmware analysis
- (2) network running services analysis
- (3) network traffic analysis (e.g., device <-> cloud)
- (4) authentication/authorization issues

Our recent contributions: CVE-2017-3209, CVE-2017-8865/66/67.

Security and Privacy for Drones

We discovered and reported vulnerability: CVE-2017-3209

Figure 4. A near-by attacker can modify sensitive files (via a misconfigured anonymous ftp login) to gain root access via Telnet.

Discussion and Conclusion

We show that voice-enabled toys---targeting young children---pose new unanticipated threats [4]. An attacker can inject malicious voice content and insult or ask young children to do unsafe things. Also, an attacker can obtain private-sensitive data (when the toy is lost or resold). We successfully tested these attacks.

Figure 3. Extracting root password---hard-coded---in the firmware.

Internet Connected Smart Toys

- (1) Dino devices use weak mode of encryption
- (2) Dino devices use hard-coded keys for encryption
- (3) Dino devices are vulnerable to replay-attacks

Figure 6. List of vulnerabilities we found & attacks we tested on CogniToys Dino.

Reference

- [1] C. Brook, Many Commercial Drones Insecure by Design. Threatpost Security News, May 2017.
- [2] CERT/CC, Note VU#334207 DBPOWER U818A WIFI quadcopter drone allows full filesystem permissions to anonymous FTP, 2017.

Further, we tested a variety of attacks in a new family of drones (U818A) released in 2016 [1, 2]. Our concerns over safety (taking down a drone operated by someone else) and privacy (taking unauthorized pictures) alert us that even when a drone is purchased as a toy, cyber-attacks can have dangerous, real-world consequences [5].

- [3] CERT/CC, Note VU#923388 Swann SRNVW-470 allows unauthorized access to video stream and contains a hard-coded password, 2016.
- [4] J. Valente and A. Cardenas, Security & Privacy of Smart Toys, IoT S&P at CCS'17, 2017.
- [5] J. Valente and A. Cardenas, Understanding Security Threats in Consumer Drones Through the Lens of the Discovery Quadcopter Family, IoT S&P at CCS'17, 2017.

TID THE UNIVERSITY OF TEXAS AT DALLAS Erik Jonsson School of Engineering and Computer Science <u>ACKNOWLEDGEMENTS</u>: This material is based upon work supported by Air Force Office of Scientific Research under award number FA9550-17-1-0135 and by NSF under award number CNS 1553683.