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Abstract

We analyze the security practices of three smart toys that com-
municate with children through voice commands. We show the
general communication architecture, and some general security
and privacy practices by each of the devices. Then we focus on the
analysis of one particular toy, and show how attackers can decrypt
communications to and from a target device, and perhaps more
worryingly, the attackers can also inject audio into the toy so the
children listens to any arbitrary audio file the attacker sends to the
toy. This last attack raises new safety concerns that manufacturers
of smart toys should prevent.

1 Introduction

Technology is taking an ever increasing role in children’s devel-
opment. It can help children remain engaged in many types of
subjects and improve their problem solving skills, but new ad-
vances and devices can also bring new challenges and problems.
Smart toys that listen to children and interact with them have
been growing in popularity; however this rise has also been ac-
companied by a variety of privacy fears [11, 17, 26, 29], vulnerabili-
ties [9, 14, 16, 19, 22, 24], research studies [20, 21], and governmental
recommendations [12, 28, 31].

To identify the best security and privacy recommendations for
smart toys, it is important to understand how these devices can
interact with children, and how they can fail; and in particular, it
is important to see if these devices can create new unanticipated
vectors of attack. To address some of these issues in this paper we
study three smart toys, summarize their technologies, and identify
new attacks where an adversary can interact directly with children,
creating not only privacy problems, but also safety and security
problems.

We study the CogniToys Dino [15], Hello Barbie [5], and the
Toymail Talkie [7]. All of these devices enable a child to communi-
cate with the toy via voice commands; however they all implement
fairly different technologies. These three devices show different
approaches for interacting with children and allow us to explore the
new safety and privacy threats smart toys may be subject to. The
CogniToys Dino has been particularly recognized: it won the grand
prize in the 2014 Watson Mobile Developer Challenge which earned
a partnership with IBM to develop the technology further [23] and
won the 2015 Best use of Al in Education award. Also, it was named
as one of the Best Inventions of 2015 by TIME Magazine and a
finalist for the prestigious 2017 Toy of the Year Award by the Toy
Industry Association [15]. Because we found a vulnerability in how
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CogniToys Dino was authenticating and encrypting communica-
tions between the toy and the cloud, we will focus on this device to
illustrate new attack patterns as other devices may be vulnerable
to similar attacks in the future.

In particular, we point out that while most of the concerns about
smart toys have focused on privacy, our audio injection attack can
potentially be more dangerous as it is targeting young children who
are more vulnerable to deception and who presumably trust the
smart toy. For example, the attacker can inject audio to the device
so the smart toy tells children to open the door to their houses,
or to change combination locks, or lies about their parents. The
attacker can even be mean to the child, insulting their appearance
or intelligence and therefore eroding from an early age their self-
esteem and their trust of the toy and technology. We uploaded
videos illustrating the eavesdropping and voice injection attacks
we describe in this paper to a playlist on YouTube!.

2 Overview of Analyzed Smart Toys

Our three toys (dino, barbie, and talkie) all share two things in
common: these devices are equipped with a microphone and em-
bedded speakers, and the user interacts with the device by pressing
a physical button and speaking something to the device.

Our security analysis include two main parts: analyzing open
ports on the toy devices; and analyzing the network communication
between the IoT device and the cloud.

First, unlike other IoT devices (e.g., surveillance systems, con-
sumer drones), we found that these devices do not have ports such
as f'tp, telnet, or ssh open, and as such they are not vulnerable
to the same security weaknesses that may be associated to these
services. Instead, they tend to have a web server running over ports
80 or 443 and which are strictly used for Wi-Fi provisioning and
configuration of the device. Typically, once the devices are con-
figured and are given the credentials of the local Wi-Fi network,
these ports and any open Wi-Fi access points in the toys are closed
(unless the user resets the device to factory settings). Further, once
these devices are provisioned to join a Wi-Fi network, they commu-
nicate with the cloud in two different ways: either by establishing
and keeping a connection open with the cloud for the duration in
which the device is turned on (even when the device is not in use),
or by establishing a new connection each time the device wants
to transfer data to the cloud. For the CogniToys dino and Hello
barbie devices, a new connection is established with the server
each time the device restarts; while for the Toymail talkie device,
only each time the device pushes a new voice message (i.e., trans-
fers an audio file) to the cloud or pulls the server for new messages.
Then, the connection is immediately closed and the device enters
into a sleep mode after the toy finishes sending or receiving audio
files (we noticed that the transmission rate for transferring these
audio messages is very slow—e.g., may take 5 to 10 seconds de-
pending on the size of the audio message). As a result, the talkie
device may not receive a new voicemail immediately when a friend
or parent sends them until either the device pulls the server again
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(which it periodically does) or the user pushes a physical button on
the toy to check for new audio messages.

Secondly, to analyze the network traffic between each device,
we created a Wi-Fi hotspot on our computer and provisioned each
device to connect to this Wi-Fi hotspot. As such, our computer
was placed between the device and the cloud (to act like a man-
in-the-middle); and all the network traffic was routed through our
machine. Fig. 1 shows an example for this setup when analyzing
the encrypted traffic going back and forth between the smart toy
and the cloud. Our machine communicates to the cloud by being
connected to a router (via Ethernet) with Internet access.

:Laptop AP network

LAN network

'
'

'

1

'

H WI FI ethern et traffic
'

'

'

'

'

Figure 1. We setup an access point to route all the communication
to analyze traffic between smart toys and the cloud.

2.1 How Toys Join Secured Wi-Fi Networks

Because most IoT devices do not have displays nor keyboards, one
common way to provision them to join a secured Wi-Fi network
involves the user connecting their mobile device to the Wi-Fi access
point in the IoT device, and then using an app to send the network
information to the web server running in the IoT device (this is
done by a variety of devices including the Amazon Echo Dot, smart
plugs, smart light bulbs, etc.).

For the dino, the provisioning step happens via a proprietary
app, or by sending a http request directly to the toy’s web server via
our laptop. Note that the access point is open and does not provide
encryption; so if a near-by neighbor is listening to the traffic during
the provisioning, they will capture the network password sent in
clear text to the device (as shown in the http request in Listing 1).

Listing 1. Provisioning dino—network info is passed in plain-text:

curl -v -H "Content-Type: application/x-www-form-urlencoded" -d "
__SL_P_S.R=main.html&__SL_P_P.A=SSID&__SL_P_P.B=3&__SL_P_P.
C=PASSWORD&__SL_P_P.D=2" http://<ip>/profiles_add.html

Based on the web server found on the dino (e.g., configuration
panel) and the toy’s MAC address, we conclude that the device is
powered by the Texas Instruments (TI) SimpleLink CC3x family
of microcontrollers [30] (which is a Wi-Fi Internet-on-a-chip for
the deployment of IoT devices). Furthermore, we notice that the
device relies on sample applications [10] and follows best practices
from a TI white paper [27]. This TI white paper acknowledges
that an eavesdropper can intercept the network password during
Wi-Fi provisioning, but they argue that the security risks are small
because the provisioning happens only once and the attacker might
not know when it is happening. However, we argue that given the
proliferation of IoT devices using this functionality, the motivation
for an attacker to deploy devices listening for network passwords
being leaked over plain-text will increase in the next few years.

We found examples in other smart toys that attempt to trans-
mit the Wi-Fi password between the phone and the toy in a TLS-
protected channel. The barbie device runs a web server with https,
and after a secure connection is established between the barbie
and the app in the phone, the network SSID and password are sent
via the port 443 on the device. However, it has been shown [25]
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that the secure communication provided by the device could be
vulnerable to a connection flaw: an attacker can trick the device
to connect to any insecure Wi-Fi network with the name “Barbie"
(the attacker can create this Wi-Fi network) and it is then possible
to retrieve the network credentials from the proprietary app.

Finally, the talkie uses a completely different approach (one
we have not found in the dozens of IoT devices we have analyzed
before): during the Wi-Fi provisioning step, the talkie device
uses physical sensors in the device to receive network information
entered via the toy mobile app. The information is transmitted to
the toy using visual flashing lights that the optical sensor in the
toy can perceive and further retrieve the credential information
embedded in the sequence of flashing lights. In particular, talkie
uses the BlinkUp technology by Electric Imp [1]: BlinkUp transmits
information by rapidly flashing light pulses on th mobile device’s
screen running a proprietary app, and the data is read by the optical
sensor tied to the IoT device’s integrated impModule hardware [3].

By not having an access point nor a web server running when
it is first boot up, the talkie device decreases its attack surface
because it prevents near-by devices from connecting and potentially
exploiting web vulnerabilities in the toy.

2.2 Communication mechanisms
2.2.1 Deployment Architecture

We observe that IoT-based children toys can be classified in two,
(1) smart toys, where a child directly interacts with the device
(e.g., dino which intelligently replies to the child, or barbie that
responds using pre-recorded phrases), and (2) connected toys, where
achild uses the device as a means to communicate with their parents
or friends. These devices can communicate to the cloud via two
architectures: (1) IoT to cloud, or (2) IoT to App (via cloud).
Architecture 1: IoT to cloud. Devices in this category are con-
figured to connect to a local area network with Internet access.
The device must have connectivity to the Internet because typi-
cally all the computation (e.g., natural language processing, speech
recognition) is performed by a back-end server in the cloud.

As shown in Fig. 2a, a unique characteristic of devices deployed

using this architectural model is that the user does not necessarily
interact with the device by means of a proprietary app. Instead,
the user physically interacts with the device, normally by pressing
physical buttons on the device, and/or by speaking voice commands
to the device. For instance, to communicate with CogniToys dino
or Hello barbie, a child must first press a physical button on the
device before speaking to the device.
Architecture 2: IoT to App (via cloud). This IoT architectural
model provides two new capabilities: (1) an architecture where a
remote user can control and interact with their IoT devices remotely
via the web or mobile app (e.g., a classic example of a person re-
motely turning on or off a smart light bulb in their LAN network);
or (2) the IoT device can be used as means to enable communica-
tion between two people (e.g., a child with a smart toy can send
a voicemail to their parent’s phone as in the case of the Toymail
talkie or a parent can send a text message to their child’s device
and the device prints the message and physically hands it to the
child such as the Turtle Mail connected toy [8]).

Fig. 2b shows this architectural pattern. As shown in the figure,
all network traffic between the device and the mobile device goes
through the cloud. The cloud is used as a “proxy" to enable the
communication between the IoT device (deployed behind a home
router and firewall) and a mobile device (running the app and that
is not necessarily connected to the same network as the IoT device).
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So, the user may still physically interact (directly or indirectly)
with the device while other users may interact with the IoT device
remotely via an app.

2.2.2 Communication Technology

We briefly describe the underlying technologies each device uses
to transmit the voice of a child (captured by the microphone on
the toy device) to the cloud. We found that the device may either
open a continuous connection with the cloud; or establish a new
connection each time the device wants to send voice message.

Continuous audio stream: both the dino and barbie open a
continuous stream when the device is turned on. The dino device
uses the session initiation protocol (SIP) for initiating an encrypted

Voice-over-IP (VoIP) session between the device and the cloud.

Then, the traffic is transported through the Real-time Transport
Protocol (RTP) over UDP, and the traffic is encrypted at the RTP
protocol level. This implementation is commonly used in audio or
video streaming applications.

The barbie device also establishes a continuous session with
the cloud; however, it uses a more traditional approach found in
web applications. The device first establishes a secure Transport
Layer Security (TLS) connection when the device is turned on; and

the audio is constantly sent and received through http via TLS.

Even when the child is not speaking anything to the device, we can
still see traffic activity. (It has been shown [18] that barbie devices
were vulnerable to the POODLE—padding oracle on downgraded
legacy encryption—crypto bug that allows a man-in-the-middle
attacker to break the https encryption).

Noncontinuous audio transfer: the talkie uses the Electric Imp
technology to transfer an audio message to a talkie device or
mobile app. The communication happens by connecting to an agent
app deployed in the Electric Imp cloud [6]. Electric Imp developers
claim this communication happens over encrypted http methods
over tcp with full encryption [4]. One difference from the previous
communication pattern is that a new connection is established
when the toy wants to communicate with the cloud. For example,
when a child wants to send an audio message to a friend or their
parent, they first hold a button on the device, and then they speak
their message. During this time the device records the audio locally,
and only after the child clicks another physical button on the device,
the device establishes a new connection to the back-end cloud and
starts transferring the voice audio (until then, there is no traffic
activity) [2]. Once the device finishes transferring, any open port is
closed. Further, communication to the device is initiated only by the
device itself. So, the device does not accept any incoming traffic even
from devices on the same network, let alone from remote devices.

3 Threat Model

We assume that the attacker (1) acts like a man-in-the-middle in the
network, (2) is able to remotely capture the network traffic between
a device and the cloud, and (3) can record and replay network
packets. Fig. 2 shows the attack points we consider in this paper.

In addition to a network-based attacker, we also consider an
attacker that can talk to the device. This means the attacker has
physical access to the device, and can press the button to talk to the
device and can hear the responses. In the next section we summarize
what these attackers can do to extract information about the toy
owner and inject voice content.

21

loT S&P'17, November 3, 2017, Dallas, TX, USA

fF AN Do
e eg., audio
Children <————| - CogniToysDino| ! 1
° - Hello Barbie :

'
- Amazon Echo E
i

Device

User

User b Device ____|
e Attacker _________:
(a)
''''''''''''''''''''''''''''''''''''''''''''''' Wide Area Network
! 1
eg. <-'—l, H
- Petcube H ? E
st - Toymail Talkies | 1 | ' e
[ - smart bulb E ! !
A\

Children i E - smart plug ‘e 1 |

. '

' :

Attacker

(b)

Figure 2. Attack on the network: (a) between device and cloud; or
(b) either between device and cloud, or cloud and mobile device.

4 Security Analysis

We start this section by presenting our security findings on the Cog-
niToys dino. We then present an example of an attack to eavesdrop
on the traffic communication between the dino and the cloud.

4.1 Vulnerability Assessment

Overview of our findings: the privacy of the child playing with
the dino relies on the security of the device and its communication
to the cloud. In particular, if an attacker (like the one we described
in Fig. 2a) is able to compromise the communication channel, then
the privacy of a child can be exploited by remote unauthorized
users in the network. In this paper we show that even though the
traffic between the dino device and the cloud is encrypted, weak-
ness in the encryption scheme poses a serious threat: it exposes
voice content of the child using the device to an eavesdropper at-
tacker. Further, a remote attacker is able to exploit weakness in the
encryption implementation to inject voice content for the device
to speak to a child. In a different attack, a person in possession
of the device (e.g., if the device is lost or resold) can ask the dino
invasive questions about the previous owner, and the dino will
reply accurately, revealing privacy-sensitive information.

Physical access findings: as IoT devices become smarter and pro-
vide new ways to interact with users (e.g., via voice-activated ques-
tions and answers), manufacturers should consider authentication
of the person interacting with the device before revealing sensitive
information. In our experiments a different user (other than the
owner) asked the dino questions about the owner like her name,
age, birthday, where she lived, and the dino helpfully answered all
these questions. While we are impressed by the dino’s ability to
interact intelligently with their users (by far the most “intelligent”
of the devices we analyzed) these interactions also open the door to
privacy invasions. This finding is related to recent work [32] where
researchers are able to inject inaudible voice commands to activate
voice controllable systems (such as Siri, Google Now, Alexa) and
it raises the issue of how to properly authenticate the owner of a
voice-activated device.
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Network analysis findings: our network analysis reveals several
important results. We summarize the results here, and afterwards
we describe each finding in more detail. We also include the CVEs
assigned based on our findings:

(1) the device uses AES-128 with ECB mode (a weak mode of
encryption) to encrypt voice traffic between the device and
remote server (CVE-2017-8867);

(2) the device shares a fixed small pool of hard-coded keys (with
other dino devices) to encrypt/decrypt VoIP traffic (CVE-
2017-8866);

(3) the device does not provide sufficient protections against
capture-replay attacks as the device accepts any voice traffic
sent to them via RTP (CVE-2017-8865).

Background: the device uses the session initiation protocol (SIP)
for initiating an encrypted Voice-over-IP (VoIP) communication
session between the device and the cloud. As we show a snippet
of the SIP traffic in Listing 2, the plain-text signaling traffic can be
used to learn information about the username, crypto used, and
encryption key (highlighted in red). Note that this by itself is not a
vulnerability, because this is how the SIP protocol is intended to
be used; and even when the attacker does not have access to this
initial part of the traffic initialization, it is still possible to launch
the replay-attacks we explain in the next section.

Once the voice traffic is initialized, the traffic is transported be-
tween the dino and the cloud via the Real-time Transport Protocol
(RTP) over UDP. Even when there is no activity between the dino
and the cloud (because the child is not speaking to the dino or
the dino is not saying anything back to the child), there is a RTP
connection open at all times.

We found that the voice communication between the dino and
the remote server is encrypted using the AES symmetric algorithm
with a 128-size key and over the insecure electronic codebook (ECB)
mode which is a well-known weak mode of encryption. In addition,
we observed that each time the dino initializes a new session with
the cloud, the device agrees on a key index denoted as k=index:v
and each key index is further associated with the same AES key
(unknown to the attacker). The Listing 2 (mentioned earlier) shows
the key index as the k value in the SIP traffic.

Listing 2. Plaintext snippets of SIP traffic reveals important infor-
mation about the encryption algorithm and keys used.

INVITE sip:1000@[redacted]; transport=tcp SIP/2.0

Via: SIP/2.0/TCP 192.168.2.5:5020

From: <sip:[redacted]@[redacted]>;tag=0JKAwIe

To: <sip:1000@[redacted]>

Call-ID: Z2iZfmNgNSd@1Lx

Contact: <sip:[redact]@192.168.2.5:5020; transport=tcp>
Allow: INVITE, ACK, BYE, UPDATE

Proxy-Authorization: [redacted]

Content-Type: application/sdp

Content-Length: 205

v=0

0=XXXXXX XXXXXX XXxxxX IN IP4 [redacted]
s=Dino Call

c=IN IP4 [redacted]

t=0 0

m=audio 42806 RTP/AVP 9
a=sendrecv

a=rtpmap:9 G722/8000
a=direction:active
a=crypto:AES_128_EBC
k=index:15

Then, we observed that the encrypted traffic reveals a 16-byte
(128-bit) data pattern that is periodically repeated in the payload,
and that an attacker can further use this pattern to deterministically
map encrypted voice streams to one of the AES key indexes (as
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we show later, this is important because an attacker can use this
information to successfully launch replay-attacks, to eavesdrop, or
inject voice content).

Listing 3 shows a snippet of two RTP traffic streams initialized
under two different sessions, and using two different key indexes.
The traffic on the left is initialized under v = 0, and the traffic
on the right under v = 15. Although, both streams are initialized
under two different key indexes; we can see a 16-byte pattern being
repeated. For example, the hexadecimal bbc7 2ed6 b4dd dbbe
c35b d9fd 8018 5105 is repeated multiple times in the stream in
the left, and similarly db86 fddb alf2 71c1 5ad6 4a93 9a18
bo@1e is repeated in the stream in the right. We observe that these
patterns happen at the same point in time in both RTP streams, when
the traffic is first initialized and there is no voice communication
happening between the dino device and the cloud. We still see these
patterns being repeated when the device starts sending voice traffic
to the back-end cloud services, although they might not exactly
align between two different streams in the same point in time as it
did before (because the voice content is not precisely the same).

Further, we noticed that two traffic streams that are initialized
using the same k=index: v contain the exact same 16-byte payload
pattern that is periodically repeated throughout the encrypted traf-
fic (i.e., every time the traffic is initialized using v = 0 the repeated
pattern is bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105). It
follows then that each data pattern directly maps to a key index
v that was used during the session initialization. When traffic is
initialized under the same k=index: v, then both traffic are identical
when neither the child nor the dino are speaking. When either one
speaks, then the traffic is different except for the 16-byte pattern
that is still periodically repeated and exactly the same across the
two traffic streams.

Note that if an attacker has access to a dino device, then they
can use this information to initialize the device under different
v values and learn a mapping between v values and the 16-byte
pattern. Then, if the attacker has access only to the RTP traffic (and
not the SIP traffic), they can look for the 16-byte pattern in the
encrypted traffic to figure out the v used. As we show later, these
observations can be used to launch attacks against dino devices.

Finding 1 - Each device uses 16 keys: we found that the device
uses a fixed pool of 16 hard-coded keys to encrypt/decrypt the VoIP
traffic. The key is picked at random (out of only 16 possibilities)
during session initialization between the device and remote server.
In particular, the key index v we mentioned before (that is passed
in the SIP traffic to the remote server) corresponds to one of 16
possible AES symmetric keys.

Finding 2 - The attacker can buy a toy to decrypt traffic from
a target: furthermore, we found that different dino devices share
this same set of keys. Therefore RTP traffic that is encrypted by one
dino device can be decrypted by another dino device under the
condition that both devices are initialized using the same key index
v value (and thus, the same key).

An attacker with this knowledge can buy another dino device
and use the device as their attack listening tool: to decrypt en-
crypted RTP traffic from a legitimate user, and further eavesdrop on
the traffic that was encrypted by any other dino device. Since there
are only 16 possible keys, an attacker can start their dino device
under the same session initialization key index that matches the
same key index on the encrypted traffic by the legitimate user. All
the attacker needs to do, is to keep on restarting their device until
the key index in the current session matches to the one used in the
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Listing 3. Similar payload patterns due to Electronic Codebook (ECB) encryption mode used.

$diff -y <(xxd trafficl-INDEX-0.raw) <(xxd traffic2-INDEX-15.raw) | head -n 17
0000000: bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105 | 0000000: db86 fddb alf2 71cl1 5ad6 4a93 9al8 bele ...... q.2.7
0000010: bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105 | 0000010: db86 fddb alf2 71cl 5adé 4a93 9a18 bole ...... q.2.3
0000020: 9950 ae84 56c5 c@7b 2b@2 1c86 bdbl d398 | 0000020: 5afd 508e df7e 5901 80b8 d180 aabc 6f43 Z.P..~Y...
0000030: f9e7 74c4 1e62 263c 7aca a658 3763 60d5 | 0000030: 2911 bbe6 12d1 27ec efdl 3fc9 6462 140f )..... 2
0000040: 1bda a54a 46cc 128b 1a58 0161 @acl 198b | 0000040: 09a3 5749 70a7 e36b 32df c772 9050 a8c7 ..WIp..k2.
0000050: 240b 7824 bded 2e2d 1fbo c24d 1421 4515 | 0000050: 76be 4c13 37ff 5b5a 1f71 al96 d306 1af3 v.L.7.[Z.q
0000060: @eed 45c5 74ab 7ce@ 9b7d 7636 do96 f2f4 | 0000060: ec76 5b15 97c9 13a7 b5e7 8bd2 6f16 b848 .v[........
0000070: 96f1 90e0 c8dd beac 8de6 611d ecbc 5acé | 0000070: 7ef5 6154 fe34 8cld 8fc5 30c@ 8658 66d4 ~.aT.4....0
0000080: 262a l1al6 bfal 06df fo7c 32df c4cl e06b | 0000080: c6db 2668 d3a7 0d90 462e 4898 €800 3b13 &h....F.H
0000090: 5ae5 2e83 9d2a cdla 1282 66e9 eeab b65f | 0000090: 9f71 afeb bc31 1475 d25b 1de5 13e8 45b1 .q...1.u.[.
00000a0: bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105 | 00000a0: db86 fddb alf2 71c1 5ad6 4a93 9al8 bele ...... q.2.3
00000b0: bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105 | 00000b0: db86 fddb alf2 71cl 5adé 4a93 9al8 bole ...... q.2.3
00000c0: bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105 | 00000co: db86 fddb alf2 71cl 5ad6 4a93 9al8 bole ...... q.2.37
00000d0: bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105 | 00000d0: db86 fddb alf2 71cl 5ad6 4a93 9al18 bole ...... q.2.3
00000e0: bbc7 2ed6 b4dd dbbe c35b d9fd 8018 5105 | 00000e@: db86 fddb a1f2 71c1 5ad6 4a93 9a18 bole ...... q.2.J
00000f0: d731 9c8f c482 ddfl f18d 856b 55b6 6cfl | 00000f0: co3f 5e67 9fb5 3d7c d926 7861 9d1f @a39 .2%g..=|.&x
0000100: 394c e43b 4a0f 0527 b2do 6ed5 ea98 730 | 0000100: 9685 bd44 6cc@ c7d6 3d2a @f8f 9cd7 6c66 D....=%.
encrypted traffic the attacker wants to eavesdrop (e.g., RTP traffic
. . . g 1
the attacker intercepted in a remote network). When the attacker is ! repeat n times ) !
able to capture encrypted traffic of a victim, and establish a session ! _.e_ speak —dt—p (= wraffic @ ":2" |
] ) ' . . e |
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4.2 Attack Details

Based on the findings we described, we now present one of the
attacks we tested with success on dino devices. Here we show that
it is possible to eavesdrop on encrypted traffic captured between
one dino device and the cloud by replaying the traffic to another
dino device and hearing the child’s voice coming out from the
embedded speakers of the second dino device. We also tested the
audio injection attack against dino devices, but because of space
constraints (and because the attack follows a similar methodology
to the eavesdropping attack) we will publish the injection attack in
an extended version of this paper.

We divide this attack into two phases: (1) traffic capturing and
(2) eavesdropping. During the traffic capturing phase, an attacker
captures the encrypted network traffic that they are interested in
listening; and during the eavesdropping phase, the attack launches
a replay-attack to decrypt and play-back the voice traffic on the
attacker’s own dino.

The traffic capturing phase is straightforward and illustrated in
Fig. 3a. So we focus on describing the second phase.
Eavesdropping phase: a malicious user launches replay-attacks
to successfully play out loud the child’s voice to speakers embedded
on their own dino device. Fig. 3b illustrates this phase as follows:

Step 1: We assume the attacker captured RTP (encrypted) traffic
between a child’s dino and the cloud, and now wants to hear
the voice content (but does not have the private keys).

Step 2: The attacker finds out what key index v was used to en-
crypt the gathered traffic that the attacker wants to listen:
2a: The attacker looks at the v value in the SIP traffic; or
2b: The attacker maps the repeated 16-byte pattern in the

encrypted RTP stream to v. This mapping is predictable.
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(b) Eavesdropping phase

Figure 3. (a) attacker taps on the RTP traffic between child’s dino
and cloud, and captures the network packets; (b) attacker is able to
clearly listen the voice conversation between a child and the child’s
dino. This is done by replaying the captured encrypted traffic from
the legitimate user using the dino device, to the attacker’s dino.

Step 3: The attacker turns on their attacker’s dino device.

Step 4: The attacker finds out what key index “c” was used during
the initialization session of the attacker’s dino device.

Step 5: The attacker checks if ¢ == v; that is, if the gathered RTP
traffic and the current attacker’s dino session use the same
key index (and moreover, the same AES key!). If false, restart

attacker’s dino and go back to step 3; otherwise, go to step 6.

Repeat steps 3-5 until the attacker’s dino is initialized under the
same v value. When this happens, then both the captured RTP traffic
(from one device) and the current session (from another device)
share the same AES-128 key. As we show next, then the attacker’s
dino is able to decrypt and play-back the encrypted RTP traffic
captured from a child’s dino.

Step 6: As shown in Fig. 3b, the attacker’s computer is placed as a
man-in-the-middle between the cloud and attacker’s dino:



Session 2: (Unusual) Things We need to Fix Now (Il)

6.1: Attacker rewrites RTP traffic (from previous phase) to
appear as if it was coming from cloud to attacker’s dino;
e.g., modify source and destination ports, IP addresses, etc.
6.2: Attacker replays the modified RTP traffic to attacker’s
dino using the machine placed between attacker’s dino
and the cloud with a session established under ¢ ==
Step 7: The attacker’s dino receives the RTP traffic sent by the
attacker as if it was coming from the cloud, and the attacker
hears the child’s voice coming from the speakers of the
attacker’s dino.

We can use a similar approach as the one described here to inject
voice content to a child’s device. In this case, an attacker would
need to speak to their own device the content they want to inject to
a child’s device (under all possible 16 encryption keys) and save the
network packets; and then intercept the communication to a child’s
dino device and perform the replay attack using one of the traffic
streams captured (that was encrypted under the same key index as
the current session between the child’s dino and the cloud).

Since both the eavesdropping and audio injection attacks are
performed by injecting RTP traffic directly into the network traffic
communication to a dino device (to appear as if the RTP traffic was
coming from the cloud), it is not possible for the remote server to
ever notice that these attacks are happening. Further, because the
device does not authenticate incoming voice traffic (it accepts RTP
traffic from any destination as long as it comes to the correct port
under the current established connection), it is also not possible for
the toy to notice that the RTP traffic is coming from a man-in-the-
middle attacker. One way to solve this is to instead of using the RTP
protocol use the Secure Real-time Transport Protocol (SRTP) [13]
which provides message authentication and integrity checking, and
protections against replay attacks on the RTP traffic.

5 Conclusions

In this paper we studied the security practices of three smart toys
and illustrated some of their similarities and differences. Under-
standing the recurrent patterns that developers use to design these
toys can help us identify new unanticipated vulnerabilities, and
propose new solutions.

While most of the concerns about smart toys have focused on
privacy, our audio injection attack can be potentially more danger-
ous as it is targeting young children who are more vulnerable to
deception and who presumably trust the smart toy. For example,
the attacker can inject audio to the device so the smart toy tells
children to open the door to their houses, or to change combination
locks, or even tell them lies about their parents or other subjects
the attacker may find useful.

Our physical attack also uncovered the problem of authenticating
the user of voice-activated devices. Recent work [32] has shown
that it is possible to inject inaudible voice commands to activate
services like Siri, Google Now, and Alexa, even when the device
authenticates the user (the authors were able to construct wake up
words by extracting phonemes from a voice recording of victim
users). So this is still an open research problem.

Vulnerability Disclosure

Per US-CERT’s recommendation, we disclosed the vulnerabilities
we found directly to CogniToys on March 8, 2017 and they replied
promptly. We are currently working with them to address these
issues, and at the time of this writing the vendor was testing an
updated firmware to address the problems we found.
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