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ABSTRACT
We propose the use of trusted and verified social media
feeds as visual challenges to increase our confidence that
video footage from public spaces is fresh and authentic. Our
work is related to recent advances in a growing area dealing
with ways to prove physical statements to a digital (or even
human) verifier, where a verifier sends a physical (real-world)
challenge to the prover and the prover (usually a sensor)
takes measurements of the physical property and submits
the response to the verifier. Our proposal can be used to
automatically verify the video feed from a (possibly untrusted)
camera monitoring a public space.

CCS CONCEPTS
• Computing methodologies → Scene anomaly detec-
tion; • Security and privacy → Authentication; • Ap-
plied computing → Surveillance mechanisms;
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1 INTRODUCTION
Surveillance cameras are used in a variety of settings, in-
cluding the monitoring of uranium enrichment facilities to
verify that countries abide by the Nuclear Non-Proliferation
Treaty [37], monitoring access to certificate vaults protecting
secret keys [8], monitoring access to the computers generating
random numbers for the lottery [9], and monitoring electricity
substations [30]. As the sensitivity of usage scenarios and
pervasiveness of security cameras increase, we need to ensure
they are protected by defense-in-depth mechanisms to ensure
that captured images are fresh and authentic.

In a typical Hollywood bank heist film, attackers hack
the security cameras and replay old footage so that security
guards are not able to see the attack taking place. While
Hollywood films are not known for their authenticity, this
particular camera hacking scenario is becoming more realistic
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as the interest for hacking cameras and the expertise of at-
tackers continue to increase. In a recent example, the cameras
that monitored access to computers generating random num-
bers for a lottery system recorded only one second per minute
rather than running continuously like normal and prosecutors
argue that the defendant tampered with the camera equip-
ment to have an opportunity to insert a thumb-drive into
the computers without detection [9]. Similar Hollywood-style
attacks have been demonstrated in practice [11], showing how
to freeze the current frame on the video administrator panel.

These examples show the need for having multiple-defense
mechanisms for security cameras. We argue that once an
attacker has compromised the secret keys or the root-of-
trust of an embedded device, the attacker can bypass most
of the traditional integrity mechanisms that the receiver of
the message can use to verify its authenticity. In addition,
traditional security mechanisms based on secret keys are not
equipped to detect physical attacks, like moving the cameras
to point to a different place [48].

In this paper we extend our previous work leveraging ran-
dom challenges in the visual field of the camera [49] with the
design of minimally invasive, frequently-updated challenges
for cameras in public spaces. In particular, we propose and
implement a prototype of the use of tweets by a large pool
of verified users in order to provide the continuous challenge
to be displayed in the screen.

Contributions. Our contributions over our previous work
include: (1) the design of a minimally invasive system to
the public that deploys a continuous stream of trustworthy-
generated challenges used to verify the freshness of a video
stream, (2) an improved description of the adversary threats
to this system and applicable to the more general problem
of physical challenges (as discussed in Section 2), and (3)
an analysis showing how our design improves the security of
other proposals that use physical challenges.

Note that because we are not sending the challenge to
the device but to the physical world, our approach works
for legacy systems. In addition our proposal is useful for
non-security situations, such as for providing tools to auto-
matically detect when a digital signage is malfunctioning or
gets damaged.

While our proposal requires only two devices to be added,
a display and a verifier, and it can work without the need
to change any parameter in an already deployed system; our
main scenario is to partially borrow already deployed display
or digital signages (such as those shown in Figure 1) to send
the random challenge at periodic intervals.
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(a) (b)

Figure 1: Figure 1a shows an LED display in the field
of view of a camera in a parking structure. Figure 1b
shows displays in the field of vision of surveillance
cameras in an airport.

The paper is organized as follows: In Section 2 we sum-
marize related work. In Section 3 we introduce the possible
threats against our system. Section 4 describes the high-level
design of our system, including how to guarantee two secu-
rity requirements for our system: (1) how to obtain a pool
of Twitter-verified trustworthy tweets, and (2) how to keep
this pool of tweets continually active, because we need to
send continuously challenges to guarantee freshness. Section 5
shows experimental results showing the performance of our
system against the first four types of threats considered in
our model. Section 6 describes the security analysis of our
proposal and its limitations, and finally Section 7 concludes
the work and discusses future research.

2 RELATED WORK
Liveness Checks: Our work is related to ongoing efforts for
using camera phones for user identification or authentication
purposes [2, 15, 16]. A new feature called liveness check
enabled Android Jelly Bean users to unlock their devices
by blinking while unlocking. Screen lock features such as
“Face Unlock” are categorized as providing low security in
comparison to pin numbers or passwords, so it was no surprise
when researchers showed a simple solution to bypass the
liveness checks [23]. More recently, companies are investing
on innovative ways to use facial recognition technology to
replace passwords with selfies and videos [15, 16]. One of
the proposed verification process is based on having a device
prompt the user to perform certain actions, motions, or
gestures (e.g., smile, blink, tilt head) [32]. This is similar to
the intuition behind our verification system: we propose that
if the output of a camera does not reflect changes introduced
in front of the camera, then there is an indication that the
camera is not truthfully reporting fresh footage. In their case,
the verification assumes the camera to be trustworthy and
simply fails to authenticate the user; in our case, we are able
to detect tampering in the images captured by the camera.
To spoof a liveness detector, an adversary only needs a small
number of images (e.g., an image of the person it is trying to
spoof with both eyes open, and then an image of the person
it is trying to spoof with a wink) to launch the attack. One
of our goals in using random tweets is that they provide a

reasonably amount of randomness with each new challenge,
preventing these types of attacks.

Visual Channels to Share Authentication Informa-
tion: Our research is superficially related to work that lever-
ages side-channels to convey security relevant information
to users [18, 29]. In these cases a photo or a video used to
exchange information needs to be trusted, and this trustwor-
thiness rests on the premise that humans are present (i.e.,
they can see with their eyes the same image the camera is
capturing) and will be able to spot any spoofs on the image.
Our premise focuses precisely on the opposite assumption:
we assume no human in charge of verification is co-located
with the camera (in fact, for most of the time our verifier is
an algorithm and not a human), and furthermore, our threat
model assumes the attacker is able to compromise the visual
channel to send false image frames and launch replay attacks
so that the footage might not look suspicious even to security
guards. Also, because we do not send the challenge to the
camera (but to the physical world in front of the camera)
the camera does not even need to know about the attesta-
tion protocol nor stop its normal operations to perform any
attestation code (as in the case of McCune et al. [18]). Our
proposal can be used to improve security protocols that rely
on a trusted visual channel to be secure, but our proposal is
also more general and applicable to other cases.

Proving Physical Statements: The closest related work
to our own contributions is the growing area of research
leveraging physical challenges to prove properties about a
system. The ability to prove physical statements to a digital
verifier is an area of research that has attracted recent at-
tention [5, 7, 14, 20, 26, 27, 31, 33]. In its general form, the
problem is a challenge-response protocol, where the verifier
sends a challenge to the prover, the prover (usually a sensor-
equipped device) takes measurements of a physical property,
and then submits a response to the verifier with information
to help convince the verifier of the validity of a physical
property captured by the sensor. The interaction between
a verifier and a prover can have one, or multiple rounds of
challenges and responses. In most cases these mechanisms
do not rely on classical secret keys or any tamper-resistant
security hardware and can therefore serve as backup in situ-
ations where the secret keys have been compromised, or in
cases where provers do not have secret keys readily available
to them [27].

While all these contributions have advanced our under-
standing of proofs of physical properties, they have some
limitations. Some of them impose overhead for continuous
monitoring of a sensor signal, for example zero knowledge
proofs have overhead that might not be needed in most practi-
cal settings where we just want to verify that a sensor reading
is correct, and practical proposals built with Physical Un-
clonable Function (PUF) structures still need to pre-record
and privately store operations of the PUF under a variety of
sensor conditions. Proposals focusing on continuous monitor-
ing of a sensor signal [20, 31] generally assume a weaker form
of adversary model that has not compromised the proving
device or cannot serve as a man in the middle [31] (they only

Session: Analysis and Verification CPS-SPC'17, November 3, 2017, Dallas, TX, USA 

112



Camera Verifier

visual challenge – turn light “on”

video 
feed

sensePhysical 
Environment

Verify footage received 
to observe if the light is 
indeed “on”

Camera Verifier

visual challenge – turn light “off”

video 
feed

sensePhysical 
Environment

Verify footage received 
to observe if the light is 
indeed “off”

Figure 2: An intuitive idea of a challenge to verify
the integrity of camera devices includes: have a light
on sight of camera that turns on or off at the dis-
cretion of verifier. Then, the verifier can use image
processing techniques to observe if the light indeed
is on (or off) in the next image frame.

consider physical attacks) or that do not capture the specific
instantiation of the challenge sent by verifier [20].

In this paper we focus on providing tools to improving the
authenticity of video footage. Our proposal has a unique
combination of properties: (1) it can be used to auto-
matically verify sensor data continuously (in real-time), (2)
humans can also verify the physical challenge seen in the
video (this property is unique to our system as all previous
work assumes that the verifier is trusted, but in our case the
human can check–although not continuously–if the verifier is
working properly), (3) the verification can be done remotely,
(4) our system can be deployed in public spaces as the physi-
cal challenge is designed in a way that is minimally disruptive
to potential bystanders, (5) our results show that our pro-
posal is resilient to a large class of adversaries with the same
resources generally assumed in previous work [20, 31, 49]
(including physical and cyber-attacks) but we also discuss
stronger adversaries that can bypass ours and previous re-
lated work, and (6) the prover does not need to be aware
that the verifier is challenging it, because the challenge is
sent to the physical world rather than to the prover itself,
our approach can be used in “legacy” sensors (provers).

In particular we propose the use of fresh Twitter feeds to
display in a digital signage located in the field of view of
the camera whose video feed we want to verify remotely. In
addition to security purposes, our proposal can also be used to
automatically detect as soon as possible when digital signage
malfunctions, and to monitor that ads (i.e., ads instead of
tweet messages) have been shown in digital signage locations
at the appropriate times and according to a previously agreed
contract.

3 THREAT MODEL
To illustrate the basic intuition of our approach and to moti-
vate discussion on the adversary model, let us consider that
a remote verifier can turn on and off a light bulb in a room
where a camera is located, as illustrated in Fig. 2. If the
verifier turns the light on, the verifier can check if the video
received has the light on, and similarly, if the verifier turns
the light off, it can check if the video received has the light
off.

While this approach might prevent simple physical attacks
or Hollywood-style attacks where the attacker replays old
footage, it cannot thwart an attacker that knows our system
is in place and who can tap to our channel sending the
challenge. To bypass our system the attacker only needs to
capture one frame with the light bulb on, and one frame with
the light bulb off, and then replay one of these frames based
on the challenge it observes.

This leads us to the discussion of adversary models for
continuous monitoring proposals. While previous work has
focused on physical and analog-only attacks [31], or on attacks
where the adversary cannot adjust their response to each
particular challenge [20], in this work we also consider an
attacker like the one described in the previous paragraph
who will try to respond with a frame corresponding to the
challenge that was sent.

In particular, we consider the following adversary threats
in increasing severity: Physical Attacks: This is an attacker
that can attempt to damage the camera physically, cover
it, or move the camera to point to a different place [48].
Notice that these types of attacks can be launched even if
the adversary does not have the cryptographic material the
camera uses to authenticate itself and the video it sends.
Notice also that while a human-verifier can also detect these
attacks, our goal is to develop automated video processing
algorithms to detect these type of attacks automatically.
Spoofing Attacks: This corresponds to an attacker that has
compromised the authentication credentials of the camera
and can authenticate itself to the prover, but sends a video
feed of a different location. Notice that the detection of this
attacker is equivalent to the detection of physical attacks, as
our video processing algorithms will look for the display of
the challenge in the video feed but will not find it.
Replay Attacks: This attacker has compromised authenti-
cation credentials of the camera, and decides to send a replay
attack (e.g., an attack of the video from the day before).
Smart Replay Attacks: This attacker has compromised
the authentication credentials of the camera, and knows
our system is in place. This smart replay attack will keep
replaying an old image frame until we send a new challenge.
After capturing a real image frame of the new challenge it will
then continue replaying that image until the next challenge.
Compromised Verifier Attack: This attack assumes that
the attacker instead of compromising the prover (as it is tradi-
tionally assumed) compromises the algorithm that processes
the video, and reports that no attack is present regardless of
the video footage shown.
Anti-forensics Attacks: This attacker knows our system is
in place, and in addition, it attempts to create a forged image
containing the random challenge. Moreover, it attempts to
create the video footage with anti-forensic tools to prevent
the verifier from using video forensic algorithms.

In this paper we show that our proposal is strong against
the first four types of attacks, it is better than related work
using physical challenges that has never considered compro-
mised verifiers, and it is weak (and potentially broken) against
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the last attack, the final score will depend on advances in mul-
timedia forensics and anti-forensics (however we argue that
the powerful anti-forensic attacker has never been considered
before in previous related work and that previous proposals
in that space are also broken against this type of adversary;
in their papers they consider this adversary outside of their
scope).

4 DESIGN CONSIDERATIONS

Verifier

Challenge Log

save 
history

visual challenge

video feedCamera

Physical 
Environment

Digital Signage

sense

visual challenge 
fabrication / verification

Figure 3: (1) A visual challenge is sent to a display,
(2) the camera captures a video of a scenery includ-
ing the display, (3) the verifier retrieves the next
video frame, and (4) verifies the challenge in the
video frame: if the verifier confirms the challenge
in the frame just received, then it gains confidence
that the camera is transmitting fresh and authentic
footage.

As discussed in the previous section, we cannot send binary
challenges (like light bulb on or off) because these would
be fairly easy to bypass by the smart replay attacker. In
particular, we want to minimize the chances that the same
challenge is sent repeatedly to the field of vision of the camera,
and we also need a device in the field of vision of the camera
that can be used to display diverse challenges.

A digital signage or a LED display can be used to display
text (or images) sent as challenges by the verifier. Our system
design is illustrated in Fig. 3. The verifier can send random
passphrases to be displayed in the digital signage. However,
this approach would not work well for a video camera moni-
toring a public space. In order to implement our system in a
public location, we would need the digital signage or LED
display to show meaningful information to people in the area.

To address these concerns we propose to study challenges
composed by intelligible texts generated and extracted by
various sources online such as social media content. One of
the reasons why we are considering social media content is
because they are informative, popular, and look visually more
appealing than random texts or barcodes. Also, social media
content has been increasingly used to broadcast fresh, authen-
tic information (e.g., consider trending topics, news updates):
on Twitter, there are 500 million tweets on average per day,
corresponding to about 5,700 tweets per second [47]; and

there are 80 million new photos each day on Instagram [13]
and 350 million on Facebook [3].

In this paper we explore the use of tweets as challenges. In
our basic idea the verifier (1) selects a random, recent tweet
from a verified (and reputable) source (to prevent social
media attacks [12]) and sends this tweet to be displayed in the
digital signage, (2) receives the video feed from the camera
(prover), (3) using optical character recognition, it extracts
the displayed tweet from expected display location in the
image frame, and (4) verifies whether the extracted tweet is
the correct one (or close enough to the correct one).

In the next subsections we will discuss (1) how to obtain a
pool of Twitter-verified trustworthy tweets, (2) how to guar-
antee there is enough randomness, and (3) how to increase
the refresh rate of the challenge to improve the freshness
guarantees while providing the same level of usability in
public spaces.

4.1 Trustworthy Tweet Selection
We assume the Twitter server to be trusted. For example, we
assume the attacker cannot manipulate the Twitter user base
to return only tweets known in advance to the attacker, and
we assume the attacker is not able to manipulate the source
of tweets to send only tweets from malicious Twitter users.
To enforce this in practice, we consider using tweets only from
trusted sources such as Twitter verified users. While attackers
may compromise individual verified users, our design will
present multiple tweets from multiple verified users with the
hope that not all of the randomly-selected verified users used
in our challenge have been compromised.

We propose to use Twitter APIs [44] to collect real-time
tweets and provide the verifier with a large pool of fresh
tweets. New tweets are continuously pushed to the pool of
tweets such that there is always enough tweets for the verifier
to randomly choose from as the next visual challenge.

While the verification process is running, the tweet pool
needs to be maintained (or monitored by itself or another
entity) to ensure the freshness and randomness properties for
visual challenges. Thus, tweets are temporarily stored in a
self-maintained storage where the tweet pool is periodically
updated to delete unused tweets as they become old and to
add new tweets as they become available.

Preliminary Requirements. The requirements necessary for
fabricating tweet visual challenges include: (1) User list:
creating a list of Twitter users who frequently post new
tweets. Our user list consists of 337 verified users—mainly
news accounts because they show content with wide appeal
and tweet out frequently. (2) Pool creation: automatically
creating a tweet pool by storing tweets from users (from the
user list) as they tweet. (3) Self-maintaining pool: add
new tweets as they become available and auto expire old
unused tweets to maintain the pool with enough, fresh tweets.
We use MongoDB’s time to live feature to auto expire data.

Architecture. We show our proposed architecture in Fig. 4.
The most important component is the verifier. The verifier
is responsible for verifying the camera feed in real-time as
footage is captured by the camera. The verifier retrieves the
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Figure 4: We use the Twitter API to collect real-time
tweets and use them as visual challenges.

next random visual challenge (e.g., tweet), then the visual
challenge is displayed in the digital signage. When the verifier
then receives the next image frame, it verifies that the image
frame contains the correct visual challenge. If the feed does
not contain the correct challenges over a time window, the
verifier will raise an alarm.

Another important component is the tweet pool database.
This pool is dynamic, and is constantly updated by either
adding or deleting tweets. New tweets are added in real-time
as new tweets arrive for users from our list of users. Tweets
are deleted in two possible ways: (1) tweets auto expire after
a specified amount of time; or (2) tweets are automatically
deleted each time they are used as a visual challenge by
the verifier. Other components such as the processing and
streaming services are responsible for receiving tweets from
the Twitter APIs, and processing and saving the tweets to
the tweet pool where the verifier can query on demand.

4.2 Aesthetics vs. Security
Bystanders close to the digital signage may notice the visual
challenges in the digital monitor and may briefly pay attention
to them as they are displayed and refreshed in the display.
For this reason, we consider looking at the trade-offs between
the usability of displaying tweets (visual aesthetics and look-
and-feel of the visual design) and the security for preventing
attacks (increasing the refresh rate of tweets).

An advantage of using social content such as tweets is
that tweets by themselves already convey a message and look
familiar to most people. In our implementations we display
tweets using best practices from the Twitter brand stan-
dards [45] (e.g., use of the elegant and approachable Gotham
font family, leaving a 150% safety white space around the
Twitter logo) and we acknowledge that in practice the se-
lection of tweets should be carefully tailored to a particular
audience to improve the acceptability of this technology. Next
we provide a brief discussion on the pros and cons for each
proposed visual design shown in Fig. 5.

Single Tweet. One of the design considerations we study,
is the refresh rate for displaying a single visual challenge at a
time. In particular, we aim to keep a low refresh rate to allow
more time for a bystander to read the tweets being refreshed
in the monitor. Security question: what happens when we

hold the visual challenge longer? An attacker can use the
created image for the next time steps of the camera footage.
Therefore, an attacker can have enough time to learn, and
launch attacks for the remaining time the challenge remains
in the monitor. The following designs tackle this limitation.

List of Tweets. Displaying a list of tweets might be the
most natural way for users to engage with the digital monitor.
An advantage is that we can decrease the time a tweet stays
up. In particular, when we use multiple tweets and update
only one at a time: the overall visual challenge (e.g., the
composition of all tweets) will be frequently updated, while
it will still take longer for an individual tweet to disappear.
This gives more time for people to read the tweets (if they
wish to do so) while sending new challenges more frequently.
Both security and usability are improved over the last design.
One advantage is that the attacker will have less time to
create and display fake visual challenges at run-time (though
this might not disrupt the attack creation), and will certainly
prevent an attacker from creating offline fake images because
the attacker must now rely on the current 𝑣 − 1 tweets
being displayed when creating the fake images. The biggest
advantage with this design is that it significantly decreases
the time that the overall visual challenge stays on the signage,
and at the same time it increases the time for users to read
the tweet. Further, it feels more dynamic than displaying
only one tweet at a time.

Grid of Tweets. Similar to the previous design, a grid layout
is also another natural way of displaying multiple tweets. The
difference is that there is no clear indication on the order
on which the users should read the tweets. While it is an
advantage to be able to refresh multiple tweets at a time, for
users it might be annoying when they might not know when
and which tweets will be refreshed next (some users might be
overwhelmed if the number of tweets increases). This should
not be a problem considering cases when it is not meant for

(a)

(c)

(b)

Figure 5: Design strategies for displaying visual chal-
lenges: (a) single tweet, (b) grid layout, and (c) list
of tweets.
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visual challenge. This graph reflects the selection and
deletion of 6 tweets per minute.

users to read every single tweet being displayed. In terms
of security, we want to make it harder for an attacker to
correctly guess which tweets will be refreshed next and also
to create fake image frames containing the correct tweets.

One usability disadvantage for all three proposed designs
is that tweets are used only once, and a user might attempt
to wait until tweets start repeating (as it is in most signages
found in public places). However, never repeating the same
tweets is a big security advantage. Otherwise, an attacker
could simply save the sequence of video frames (containing
the tweet visual challenges) and replay when the tweet visual
challenges start repeating in the monitor.

5 EXPERIMENTAL RESULTS
User Pool Selection: We selected a total of 337 users to
collect tweets from, based on criteria such as: users’ location,
verified users, and influential / popular users. For location,
we selected users from the USA, Canada, and the UK; for
popular users, we selected news channels (i.e., users whose
description had the word news), and for influential users,
we included popular politicians, business leaders, and people
who made to The 100 Most Influential People list.

We used search queries like “news filter:verified lang:en”
on Twitter and handpicked the final user list. This search
query shows an example of how to find users that are verified,
tweets using the English language, and has the word news
on the account description. To limit users from a particular

location we can include: “near:location within:15mi” in
the search query.

Tweeting Frequency Pattern: Fig. 6 shows the average
number of tweets in a day for each day of the week. As
expected, throughout a 24-hour period, the largest number of
tweets belong to weekdays and the lowest to weekends. The
lowest number of tweets occurs at 5:50 a.m. on Sunday with
11 tweets on a 10-minute interval. Nonetheless, on average
the lowest numbers occur between 5 a.m. and 7 a.m. for all
days of the week. This is different from the highest numbers
of tweets. The highest number of tweets occurs at 6 p.m. on
Wednesday with 164 tweets for the same time interval. On
average there is a larger number of tweets between 4 p.m. and
6 p.m. for all days. It is worth noting that the results directly
reflect our choice of selected users: most users are from the
U.S. and it is understandable that they are not tweeting
during night hours. These trends could highly change when
we select more users from different time zones and users from
outside the U.S. such as from the UK or Australia.

Tweet Pool Size: By analyzing the tweeting frequency
pattern of 337 verified users, it is clear that it is not enough
to pick the latest tweet as the next visual challenge. There are
times (such as weekends and late hours) that the tweet rate
substantially decreases. For this reason, we instead create a
pool of tweets to use over time. We do this by collecting and
storing tweets (as they come) to a pool of tweets. Then at
each verification step, instead of using the latest tweet as the
next visual challenge, we pick a random tweet out of a pool
of tweets. The pool continuously updates with new tweets (as
they become available) and in parallel to the visual challenge
selection operation. After the tweet is selected to be used
as the next visual challenge, it is deleted from the pool to
prevent used tweets from being re-used.

Fig. 7 shows the tweet pool size over time (for 15 days).
Even when there are fewer tweet activities during late and
early hours, the overall number of new tweets during the day
is large enough to keep populating a large pool of tweets.
Further, these observations can be used to design better
update strategies with higher selection/deletion rate, and
auto-expiring of tweets to prevent the size of the pool to grow
infinitely while ensuring enough tweets at all times in the
pool.

One advantage we have from picking the next random
tweet out of a large pool-of-fresh-tweets (versus selecting a
random latest tweet published by one of the verified users)
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is that it helps ensuring the pool of tweets is never empty.
Another advantage is that if an attacker is able to gain access
to the pool of tweets, the attacker will not be able to correctly
guess what tweet will be used next.

User Tweeting Frequency Pattern: The users we selected
have a different tweeting frequency pattern. Fig. 8 shows the
number of tweets for all 337 users. While the plot reflects all
the users, only of subset of the users (every 10 user) is labeled
in the x-axis. Users are sorted by the number of tweets they
have tweeted over a period of 20 days. Users like @nytimes

tweeted 2,758 times, whereas others like @TwitterSF only 8
times. It turns out that most users (269 of them) tweeted
overwhelmingly under 1,000 versus the 22 users that tweeted
more than 2,000 and 7 users that tweeted more than 3,000.

Word and Character Frequency vs. Reading Speed: In our
studies we found that on average the tweets we gathered
where composed of 12 words (11.88) and 95 characters (94.76).
Studies suggest that the average reading speed of an adult
ranges from 200 to 250 words-per-minute (WPM) [19] and
more precisely 228(+/-30) WPM [41] and 863(+/-234) char-
acters per minute (CPM). Therefore, in our case a reasonable
refresh rate would range from 2.79 to 3.64 seconds to leave
each tweet in the monitor (based on our average number of
words).

In the case we use multiple tweets, we can increase the
refresh rate while still maintaining a reasonable time for
each individual tweet. For example, consider that we use
three tweets at a time. Then, if we leave the overall image
in the monitor (containing three tweets) for 1 second, the
longest time an individual tweet will be displayed would be
3 seconds which is within a good range for a person to read
and we would have minimized the overall time of each unique
combination of tweets in the monitor. Therefore, decreasing
the maximum duration of a smart replay attack.

5.1 Live Video Capture and Recognition
Tweets Captured for Recognition. We have continuously

displayed a total of 11,494 visual challenges in the monitor
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Figure 8: The number of tweets per user for a period
of 20 days. Users are sorted by order of most number
of tweets to users with the least number of tweets.

(DELL E156FP 15” LCD monitor) placed in the field-of-
view of the camera; and we have captured a video frame

for each time a new visual challenge was displayed. In our
experiments, we have refreshed the visual challenge every 4
seconds. We captured video frames both during day time
and at night time, to test the accuracy of recognition for
different lighting settings. Fig. 9a shows our deployment
setup for conducting experiments. In this photo we show the
Swann NVW-470 surveillance camera system we use in all
our experiments, and we show a digital monitor (slightly in
front of the camera) displaying a Tweet visual challenge on
the upper right hand-corner of the screen. Here, the laptop
(not pictured) runs the verifier code generating the visual
challenge (by retrieving tweets via the Twitter API), and
displays the visual challenge in the monitor. The verifier also
runs the recognition algorithm to extract a digital form of
the Tweet text from the visual challenge and compare it with
the desired text as described next.

(a)

(b)

Figure 9: (a) A photo of our setup where the monitor
is placed in the field-of-view of the camera. (b) An
example of an image frame captured by the surveil-
lance camera.

Fig. 9b shows our implementation of the multiple tweet
challenges. The figure is of an image frame captured by the
camera—part of the monitor displaying the visual challenges
can be seen in the figure. The tweets are aligned using a
list design. As we show in our results later, we perform our
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image processing step for each tweet individually, and then
calculate an average of the accuracy score for multiple tweets.
The results we get by using the list-of-tweets design is similar
to using the grid design (not shown in the photo).

5.1.1 Recognition Accuracy of Visual Challenges. Our vi-
sual challenge recognition process is described in Fig. 10. As
described before, first the verifier picks a random tweet to
display in the monitor. Upon receiving the next video frame,
our image processing includes the following: (1) detection of
visual challenge in the video frame, (2) cropping the visual
challenge from the frame, (3) thresholding the image frame,
(4) sharpening, and (5) resizing by enlarging the image. Once
we have prepared the image frame, we recognize the visual
challenge using an optical character recognition (OCR) en-
gine. In our experiments we use tesseract [39] as the OCR
engine. We use the following metric (based on [25]) to calcu-
late the recognition accuracy score of our visual challenges:

accuracyocr =
𝑙 − 𝑑𝑖𝑠𝑡

𝑙
∈ [0, 1]

where 𝑙 is the length of the correct string and 𝑑𝑖𝑠𝑡 is the edit
distance—a metric to tell how far apart the extracted string
is from the correct one based on the minimum number of edit
operations necessary to convert one string to another, i.e., the
number of errors between the recognized and original text.
To compute the edit distance (also known as the Levenshtein
distance [21]) we use the python-Levenshtein [10] library in
our implementations.

video frame

image processing

recognized text
I'm closing in on Mars! Who is going to 

sleep tonight? Not the team, too 
excited/scared/anxious seeing 5 years of 

work come to this last day

I'm closing In on Mars! Who is going to 
sleep tonight? Not the team. too 

excited/scared/anxlous seeing 5 years of 
work come to this tast day

original text
accuracy score

2

5

3

4

1

OCR

Figure 10: Visual challenge recognition process: (1)
original text is used as visual challenge in the display;
(2) camera captures the next video frame; (3) image
processing includes: detection of visual challenge in
the frame, cropping the visual challenge, threshold-
ing, sharpening, and resizing the image; (4) visual
challenge is recognized with an OCR algorithm that
is trained with characters from the original text; and
(5) the extracted text is compared with the original
text using the edit distance to calculate the accuracy
score.

In Fig. 11 we show the recognition accuracy score per user.
There are a total of 5,052 blue dots in the figure depicting

the accuracy score for each frame recognized (from over 11
thousand image frames collected). We show a subset sample of
character recognition accuracy scores for each visual challenge,
grouped by the corresponding Twitter user. The y-axis shows
multiple scores (blue dot) for each user in the x-axis; thus,
multiple dots per user are aligned vertically. The brown
line shows the average accuracy score per user. The average
accuracy is high for all but a few users (mostly those who
tweeted short URLs).

Several of the users who had a low accuracy score tweeted
short URLs, and we found a discrepancy on how Twitter
displays URLs on tweets (most URLs on the tweet text
retrieved from the API are a shortener to a short URL like
http://t.co/4SR5N1D3GB whereas embedded tweets contain
the original URLs) causing low accuracy scores because of
mismatched URLs. In order to obtain better results we could
potentially filter users who tweet URLs.
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Figure 11: Accuracy score of captured frame per
user.

Fig. 12 shows the accuracy for recognizing visual challenges
in over 1,025 captured frames where the challenge was com-
posed of a list of multiple tweets. The visual challenge in each
frame is different from the challenge in the previous frame
by just one new tweet; and from the fact that the tweets
were slightly shifted up to make room for the new tweet to
appear. For each frame, we have calculated the accuracy of
individual tweets (blue dot) and the average score among
the multiple tweets (brown line). We ordered the x-axis from
high-accuracy to low accuracy.
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While the accuracy of our multiple-tweet proposal is good,
it is far from perfect. However, we do not need to have perfect
accuracy for our system performance, we only need to have
more confidence that the challenge is in the video frame we
received, instead of another (perhaps older) challenge.

To see how the error rate (e.g., 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) behaves
before and after an attack, we experimented with sending
old frames to the verifier starting at frame 177. The results
are illustrated in Fig. 13.

As we can see, in order to decide if the challenge is the
correct one or not in the frame, we only need to select a
threshold close to 50%. We explore in more detail how good
is our binary classification accuracy under a variety of thresh-
olds in the next section.

0 100 200 300 400 500 600 700 800 900 1000

Time Step
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20%

40%

60%

80%

100%

Er
ro

r S
co

re

Replay Attack

error score with replay attack
error accuracy without attack

t = 177

attack starts

Figure 13: Error score under a replay attack.

There has been an increasing interest in leveraging com-
puter vision to help visual impaired people to access visual
information [4, 6, 17, 24, 38]. Some of these works look at
the problem of recognizing digital signage with the goal of
parsing the information transmitted by the signage to the
user. This problem is much more challenging than ours. One
obvious advantage of our system is that the verifier knows
where the visual challenge is located in the image frame, and
also what the visual challenge should be, whereas the related
approaches in fact try addressing the text localization prob-
lem. The second advantage of our problem is that we do not
need to get 100% OCR accuracy recognition. We only need
to be fairly certain (e.g., 60% accuracy) that our expected
text is in the image.

5.2 Binary classification accuracy
We classify each frame into either one of two classes as follows:

class =

{︃
1, accuracyocr > 𝑡ℎ𝑟𝑒𝑠ℎ

0, otherwise

The first class consists of frames that have the correct chal-
lenge the verifier sent, and the other one consists of frames
that have a different challenge. Table 1 shows possible thresh-
old values that we found to work well in our experiments.
For example, when we use 1,078 correct frames (the positive
class) and 1,078 replayed frames (the negative class) and
compare their performance we find the following results: (1)
By using thresh=27.5% (shown in bold in the table) we cor-
rectly classify 1,066 (out of 1,078) frames belonging to the

positive class (true-positive) and only 12 false negatives; and
(2) for the incorrect frames (from a replay-attack) we have
2 false positives and 1,076 true negatives. Fig. 14 shows the
Receiver operating characteristic (ROC) curve to show the
performance of our binary classifier system.

Table 1: Binary classification on different thresholds

Threshold TP FN FP TN TPR FPR

15.0% 1,070 8 506 572 0.993 0.4694
17.5% 1,069 9 368 710 0.992 0.3414
20.0% 1,068 10 200 878 0.991 0.1855
22.5% 1,067 11 65 1,013 0.990 0.0603
25.0% 1,067 11 12 1,066 0.990 0.0111
27.5% 1,066 12 2 1,076 0.989 0.0019
30.0% 1,064 14 0 1,078 0.987 0.0000
32.5% 1,063 15 0 1,078 0.986 0.0000
37.5% 1,062 16 0 1,078 0.985 0.0000
40.0% 1,061 17 0 1,078 0.984 0.0000
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Figure 14: ROC curve using data from a replay at-
tack. We simulate a replay attack by recording pre-
vious frames and replaying them at a later time. Re-
sults from using (a) single-tweet design and (b) list-
of-tweets design as visual challenge.

These results show a robust performance against (1) phys-
ical, (2) spoofing, and (3) replay attacks. To mitigate the
problem of (4) smart replay attacks, we have designed a
challenge system that contains multiple tweets, in order to
minimize the time a smart replay attacker will have between
replaying a valid frame and receiving the next challenge.

6 SECURITY ANALYSIS
As shown in the previous section, our implementation pre-
vents several attacks from our threat model:
Physical Attacks: If the camera is covered or destroyed,
the video frames received by the verifier will not have the
tweet, and verification of the tweet will fail. If the camera is
moved to point to a different location, the tweet will appear
in a different location of the image frame, and thus the verifier
can detect that the tweet is not being displayed in the correct
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location of the frame. Spoofing Attacks: As in the previous
case, if the video sent by the attacker does not correspond
to a video that contains the display of a visual challenge,
then the attack will be detected. Replay Attacks: If the
attacker replays video containing old challenges (tweets) the
optical character recognition algorithm used by the verifier
will detect that the challenge displayed is not the same as the
challenge that was sent. The ability to detect this depends
of course on how often we refresh challenges. This leads us
to the next attack. Smart Replay Attacks: This attacker
will only display a still image of the most recent challenge.
While the challenge is not refreshed, this image will pass
the test of the verifier, therefore if we want to prevent the
smart replay attackers to have a long time to show us an
old frame, we would need to refresh the challenge frequently
enough. This attack is the reason we selected Tweets as visual
challenges instead of other less frequent media updates like
headline news. The ability to tap to hundreds or thousands
of verified Twitter users in our analysis, shows that there is
always a fresh, recently posted Tweet we can use to satisfy
our challenge refresh rate requirements.

In order to minimize the amount of time that the smart
replay attacker can replay an old frame and pass the verifier
test, we need to refresh the verification challenge frequently
enough. However we now need to take into consideration
design issues related to human factors. If we refresh a tweet
frequently enough, people in the area attempting to read it
will be frustrated by the refresh rate, however, if we update
tweets for example, every minute, then the smart replay
attacker will have a minute where it can replay the first video
frame and then attempt some malicious action in the field of
vision of the camera for one minute without being detected.
To mitigate these concerns we designed multiple interleaving
challenges. So instead of showing only one tweet, we had
have several of them and then only update the oldest one
each time. Assuming we have enough tweets in the display,
allowing us to refresh the challenge rate we can minimize the
time a valid smart replay attack is valid.

Our final two attacks (a compromised verifier and an anti-
forensic forgery attack) are more difficult to defend against.
We argue however that previous work most related to our
own setting has not considered these advanced attacks, and
in this paper we want to give some initial ideas on how we
can tackle these attacks.

In particular the security of previous proposals always
assumes the verifier is trusted (the system fails if the verifier
is compromised). In our case, if an attacker compromises the
verification procedure, it can always report a good match
between the challenges and the video, even though the image
can be completely fabricated.
Compromised Verifier Attack: Notice, that given our
design choices, the verification of the challenge can also be
easily done by a human operator. The human operator cannot
do this verification continuously as our automated algorithms
(it is not a perfect solution), but it can do so occasionally, or
if other indicators of compromise are present. To check if the
verifier is working correctly the human operator can check the
received video feed, identify the author of the tweet (a trusted

reputable and popular Twitter user in our design) and then
using a different (hopefully uncompromised) computer check
the Twitter feed of the claimed author, and check whether
the tweet is fresh (the tweet needs to be less than a couple
of minutes old in our design). While this may not a perfect
solution to the problem, we believe our work is the first to
propose a partial solution to the problem of having the digital
verifier compromised.

The final adversary is the most challenging to protect
against. If an attacker has remote access to the camera, and
also has the necessary credentials to be a man-in-the-middle
between the camera and the verifier, it can capture the image
of the camera, crop the area where the current verifier appears,
and paste it over the image frame the attacker wants to spoof
before sending it to the verifier. This is a powerful adversary
whose analog has rarely been considered in other similar
proof of reality work [20, 31].
Anti-Forensic Attack: Our previous experiments in image
forensics [49] and those of others [22, 36] can attempt to
minimize this threat by detecting so called copy-and-paste
(or copy and move) image forgery attacks [1]. Unfortunately,
for pretty much any image forensic tool, there is an anti-
forensic attack (i.e., a forged image attack that tries to bypass
attempts from forensic tools to identify if the image has been
tampered with) [35]. The state of the art in the forensic vs.
anti-forensic research community considers this problem a
cat and mouse game [34]. At the end of the day the success
of an anti-forensic attack will depend on the power and
resources of the adversary (how much does it know about the
forensic tools we use) and on some luck (it needs to generate
a continuous stream of successful anti-forensic images and
we only need one mistake or lighting condition advantage to
detect one forgery).

Note also that by relaying on Twitter services to provide
our challenges, our system will depend on an infrastructure
that is not in our control. Twitter can change their services,
or our connection to Twitter can even be attacked by our
adversary in order to prevent us from receiving fresh tweets,
forcing us to stop sending new challenges. We can always try
to mitigate these concerns by using several services (Twit-
ter, Instagram, Facebook, News Headlines etc.) or if we are
completely offline, by asking our verifier to generate its own
random phrases to be sent as physical challenges.

Finally, recall that we are using Twitter-verified accounts,
and not just random Twitter accounts, as such the secu-
rity of our scheme also depends on the ability of Twitter
to provide trustworthy verified accounts. In particular, by
selecting high-profile Twitter-verified accounts (instead of
random accounts), we minimize the risk of generic attacks
against Twitter [28, 40], including mass account hijacking,
and fake accounts. Further, for the purposes of our verifica-
tion mechanism, we do not discriminate Twitter accounts as
those propagating fake news or not. Our approach is inde-
pendent to tweet content. So, as long as the account from
where the tweet is coming from is verified and belongs to a
trusted, reputable source we include those tweets to be used
as visual challenges.
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When we performed our experiments, Twitter verification
was not open to the public, but recently, Twitter opened
their verification process to the public [46]. While this might
increase the risk of having malicious Twitter-verified accounts,
our design selects high-profile news organizations, which
should remain trustworthy users. Having said that, it will
be interesting to monitor the behavior of Twitter-verified
accounts, and see if opening this verification to the public will
increase the level of malicious yet Twitter-verified accounts.

7 CONCLUSIONS
We have proposed a new way to verify the integrity of video
footage from cameras deployed in public spaces. Our proposal
has a unique new combination of properties: (1) it can be
used to automatically verify sensor data continuously (in
real-time), (2) humans can also verify the physical challenge
seen in the video (this property is unique to our system as all
previous work assumes that the verifier is trusted, but in our
case the human can check—although not continuously—if the
verifier is working properly), (3) the verification can be done
remotely, (4) our system can be deployed in public spaces as
the physical challenge is designed in a way that is minimally
disruptive to potential bystanders, (5) our results show that
our proposal is resilient to a large class of adversaries, and
(6) the prover does not need to be aware that the verifier is
challenging it, because the challenge is sent to the physical
world rather than to the prover itself, our approach can be
used in “legacy” sensors (provers).

Perhaps the largest challenge that remains open is the
problem of forensic and anti-forensic tools for detecting image
forgeries like the copy-and-paste or copy-and-move attack.
This is a line of work that is highly relevant for the security
of our system against stronger adversaries, but it is also
an orthogonal line of work. The unique property that our
proposed system has when compared to traditional image
forensic analysis is that in the standard case, the forgery
does not need to be created in real-time, while in our case,
if the attacker wants to bypass the verifier test, the forgery
needs to be created in real-time. Unfortunately copy-and-
paste forgeries can be created efficiently. The only question
remaining would be on the real-time anti-forgery tools.

We plan to continue this line of research in future work by
finding analogies of our proposal to other sensor applications.
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A TWITTER APIS
The Twitter REST API allows us to retrieve tweets users
have tweeted in the past while the Streaming API returns new
tweets as they become available. Fig. 15 shows an example
of an application using the REST API [43]: the application
accepts user requests, sends one or more requests to the
Twitter’s API, and then sends back the results to the user.
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User sees 
rendered 
response

User

Server makes a 
request to Twitter’s 
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Data is rendered

HTTP server Twitter

Twitter issues 
API response

Twitter issues 
API response

Figure 15: Example of an application using the
REST API.

We experimented with the REST API; however, we found
out that the tweet retrieval is rate limited to 450 queries per
15 minute window [42]. We therefore turned to the Streaming
APIs instead to avoid rate limits. Fig. 16 shows how the
Streaming API works [43].
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Figure 16: Example of an application using the
Streaming API.

By default, the Streaming API delivers a stream of tweets
with (1) tweets from a list of users (we specified), (2) tweets
retweeted by those users, (3) replies to tweets created by the
users, (4) retweets (RTs) of tweets created by the users, and
(5) replies created without pressing the reply button (e.g.,
@MarsCuriosity hello). Upon receiving new tweets, the ver-
ification system filters and processes all incoming tweets to
select only those that make good candidates for visual chal-
lenges: we discard tweets that start with "RT @" (because
they are essentially repeated tweets and can compromise the
freshness property of our system) and any tweet that does
not come from a user specified in our application (e.g., tweets
that were RTed by pressing the retweet button on Twitter).
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