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1. INTRODUCTION

For the past twenty years, Intelligent Trans-
portation Systems (ITS) have been considered 
as possible solutions for traffic safety and 
congestion problems. An ITS is defined as 
“the application of advanced sensor, computer, 
electronics, and communication technologies 
and management strategies in an integrated 
manner to increase the safety and efficiency 
of the surface transportation system” (Meyer, 
1997). The work presented in this paper is 

based on a novel, multilayered integrated ITS 
for safety improvement and congestion reduc-
tion (Boyraz et al., 2009a; Wenkstern, Steel, 
Daescu, Hansen, & Boyraz, 2009a). In this ITS 
infrastructure traffic is viewed as a bottom-up 
phenomenon that is the consequence of indi-
vidual decisions at the micro-level, and traffic 
management as a top-down activity that is the 
result of decisions taken at the macro-level. 
Both macro- and micro-levels consist of multi-
agent based infrastructures where autonomous 
traffic entities continuously communicate and 
interact with each other to achieve traffic safety 
and efficiency goals. Even though some of the 
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proposed ITS components have already been 
implemented, the overall infrastructure is still 
in its conceptual phase.

Given the critical role of interactions among 
ITS components and their independent decision 
making capabilities, it is essential to simulate 
traffic scenarios under nominal and extreme 
conditions before deploying the physical in-
frastructure on roads and highways.

MATISSE (Multi-Agent based TraffIc 
Safety Simulation systEm) is an agent-based 
“tailor made” simulation framework designed 
to provide a platform for the execution of such 
scenarios. MATISSE provides means to ana-
lyze and evaluate different ITS configuration, 
collaboration, and control strategies. Before 
embarking on the full-scale development of 
this large-scale, distributed, multi-agent based 
simulation framework, the specification and 
validation of MATISSE’s properties proved to 
be necessary.

Alloy is a modeling language based on set 
theory and first order logic that has been used in 
both industry and academia to validate a wide 
variety of systems (Coppit & Sullivan, 2000; 
Dolby, Vaziri, & Tip, 2007; Jackson & Vaziri, 
2000). The language has a simple and concise 
syntax that comes with a powerful, integrated 
tool for compiling and analyzing models.

The purpose of this paper is to present a 
formalization of the MATISSE model in Alloy, 
and discuss how the model’s core properties are 
verified using Alloy’s Analyzer. In particular, 
we discuss an approach to produce execution 
traces from the specification. These traces 
serve two purposes: they allow for a thorough 
analysis and evaluation of the traffic model; 
and demonstrate the suitability of MATISSE 
for the simulation of ITS scenarios.

In the following section we give an over-
view of traffic simulation systems. In Section 
3 we briefly present the proposed ITS and 
MATISSE’s high level architecture. In Section 
4 and section 5 we discuss how Alloy has been 
used to specify, verify, and analyze MATISSE’s 
model. In Section 6 we present an evaluation 
of the approach. Finally, in Section 7 we give 
an overview of related works.

2. TRAFFIC SIMULATION

There are two major approaches to simulate 
traffic scenarios. Macroscopic models (Babin, 
Florian, James-Lefebvre, & Spiess, 1982; Lieu, 
Santiago, & Kanaan, 1992) describe traffic 
as a physical flow of fluid and make use of 
mathematical equations relating macroscopic 
quantities (e.g., traffic density, flow rate and 
average velocity). These models assume ra-
tional driving behavior and fairly consistent 
traffic streams and thus are unfit to model real 
traffic operations.

In contrast, microscopic models con-
sider the characteristics of individual traffic 
elements (e.g., vehicles, traffic lights, traffic 
signals, driver behavior) and their interactions. 
Typical microscopic models are based on ana-
lytical techniques such as queuing analysis and 
shock-wave analysis (Helbing & Tilch, 1998). 
They assume traffic elements with predefined 
behavioral models. This is a limitation since 
realistic traffic simulation scenarios call for the 
modeling of unexpected behavior and unfore-
seen environmental conditions. The multi-agent 
paradigm alleviates this limitation by providing 
means to address non-deterministic behavior in 
non-deterministic, unpredictable environments.

Over the last decade, a large number of 
agent-based traffic simulation systems have 
been proposed. Some focus on specific small 
scale traffic problems such as driver behavioral 
modeling, tactical driving, and intersection 
management (Dresner & Stone, 2008; Rossetti 
& Liu, 2005; Sukthankar, Hancock, & Thorpe, 
1998) while others attempt to tackle complex 
large scale traffic scenarios (Balmer et al., 
2009; Cetin, Nagel, Raney, & Voellmy, 2002; 
Galland, Gaud, Demange, & Koukam, 2009). 
In this section we restrict our discussion to 
those that best compare to MATISSE, namely 
MatSim (Balmer et al., 2009), and Transims 
(Cetin et al., 2002).

MatSim (Balmer et al., 2009) is an agent-
based framework for modeling transport 
demand. MatSim represents individual travel-
ers as agents endowed with predefined plans. 
These agents follow a utility based strategy to 
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determine their optimal daily plan. Interactions 
among agents are implicitly encoded into the 
agent’s utility function. In its current version, 
traveler agents cannot directly interact with 
other agents. In addition, agents are not capable 
of perceiving their environment dynamically. 
They act upon global environmental knowledge 
seeded at initialization time.

Similarly, Transims (Cetin et al., 2002) is 
a large-scale microscopic simulation system 
for transportation planning and congestion 
evaluation. In Transims travelers are modeled 
as agents which can walk, drive cars, or use 
buses. Traveler agents can decide which plan to 
select depending on their current state but they 
cannot dynamically perceive their environment. 
It is also unclear whether they can interact with 
other agents. Transims’ environment is static and 
fully observable, thus reducing its capabilities 
to model complex and realistic scenarios.

Our work enhances the conventional urban 
traffic simulation by proposing a multi-agent 
based framework that simulates macro- and 
micro-level traffic entities and their interactions 
within and across levels. The unique charac-
teristics of MATISSE are: 1) the simulation 
environment is open, i.e., non-deterministic, 
dynamic, inaccessible and continuous (Rus-
sell & Norvig, 1995). The environment has 
mechanisms that allow the simulation of event 
propagation. 2) The agents are not given global 
environmental knowledge to act upon. They dy-
namically perceive their surroundings through 
various senses. 3) At run-time, the user can 
change the properties of the simulated agents 
(e.g, driver “awake” to driver “asleep”, disable 
agent sensors) and the environment (e.g., change 
the laws that govern the environment) without 
interrupting the simulation. To the best of our 
knowledge, no other existing framework offers 
this integrated set of features.

A recent system called JaSim (Galland et 
al., 2009) was developed along the same prem-
ises as MATISSE. Even though it shares the 
same environment structure and similar agent 
perception mechanisms, it lacks the advanced 
simulation features of event propagation and dy-
namic property modification discussed above.

3. OVERVIEW OF ITS 
AND MATISSE

In this section, we briefly present the main 
components of the proposed ITS and discuss 
MATISSE’s architecture. More detailed discus-
sions on these topics can be found in (Boyraz et 
al., 2009a; Wenkstern et al., 2009a; Wenkstern, 
Steel, & Leask, 2009b).

3.1. Elements of a Novel ITS

The proposed ITS aims at enforcing communi-
cation, interaction, and collaboration between 
various types of elements defined at various 
levels of abstraction. In the remainder of this 
paper we will use the word “micro-level” ele-
ment to refer to an entity that has very limited 
knowledge of the state of the world. In contrast, 
a “macro-level” element refers to one that is 
aware of a larger portion of the world.

The infrastructure is based upon two un-
derlying concepts:

• In order to manage a large environment 
efficiently, it is necessary to partition the 
space into smaller defined regions called 
traffic area;

• Each traffic area is assigned a tower. A 
tower is required to: 1) autonomously 
manage environmental information about 
its traffic area; 2) be aware of the traffic 
elements (e.g., vehicles, traffic devices) 
located in its defined area; 3) be able to 
interact with local traffic elements to inform 
them about changes in their surroundings; 
4) be able to communicate with other towers 
to inform them of external events.

In order to manage traffic information 
efficiently, traffic towers are organized as a 
hierarchy (see Figure 1). This structure is par-
ticularly important for the case when towers 
need a higher level of knowledge to properly 
manage their traffic areas. For example, if 
congestion is caused by an accident in an area, 
and the micro-level information is insufficient 
for the tower to determine the best exit route 
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for its local vehicles, it will communicate with 
a higher level traffic tower to obtain a broader 
image of the traffic.

The micro-level entities are classified in 
two categories:

• Mobile Context-Aware Intelligent (CAI) 
vehicles (Boyraz, Yang, Sathyanarayana, 
& Hansen, 2009b). These are vehicles 
equipped with devices that allow them to 
1) monitor the driver’s behavior in order to 
prevent possible accidents; 2) communicate 
with other vehicles and traffic devices; 
and 3) interact with the traffic tower in-
frastructure to obtain traffic information 
and guidance in real time;

• Stationary Context-Aware Intelligent 
(CAI) traffic devices. These include 
traffic lights, traffic collection devices, 
and relay units. They serve the purpose of 
improving safety and traffic flow on roads 
and highways by providing information 
about the physical traffic infrastructure 
and congestion condition. Traffic lights 
are equipped with adaptive systems that 
allow them to 1) interact with the traf-
fic tower infrastructure to obtain traffic 
information in real time, 2) communicate 
with vehicles for intersection coordination, 

and 3) communicate with other traffic light 
controllers to improve traffic flow when 
necessary. Traffic collection devices are 
used on highways to collect information 
about traffic, and communicate the infor-
mation to the traffic management system 
for further analysis (e.g., identification of a 
drunk driver on the highway). Relay units 
are used to pass on information between 
the various communicating entities when 
the physical distance is too great.

3.2. MATISSE Architecture

MATISSE is a “tailor made” multi-agent 
based simulation platform designed to specify 
and execute simulation models for the above-
mentioned ITS. We define an agent as a software 
entity which (Mili, Steiner, & Oladimeji, 2006): 
1) is driven by a set of tendencies in the form 
of individual objectives; 2) can communicate, 
collaborate, coordinate and negotiate with other 
agents; 3) possesses resources of its own; 4) 
executes in an environment that is partially 
perceived; 5) possesses skills and can offer ser-
vices. A virtual agent is an application specific 
agent that represents a real world concept (e.g., 
vehicle, traffic device).

Figure 1. ITS super-infrastructure
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As shown in Figure 2, a virtual agent con-
sists of four main modules (Mili et al., 2006). 
The Interaction Module handles an agent’s 
interaction with external entities and separates 
environment interaction from agent interaction. 
The Environment Perception Module contains 
various perception modules emulating the 
agent’s senses and is responsible for perceiv-
ing information about an agent’s environment. 
The Agent Communication Module provides an 
interface for agent-to-agent communication. 
The Knowledge Module is partitioned into Ex-
ternal Knowledge Module (EKM) and Internal 
Knowledge Module (IKM). The EKM serves as 
the portion of the agent’s memory dedicated to 
maintaining knowledge about entities external 
to the agent, such as acquaintances and objects 
situated in the environment. The IKM serves 
as the portion of the agent’s memory dedicated 
for keeping information that the agent knows 
about itself, including its current state, physical 
constraints, and social limitations. The Task 
Module manages the specification of the atomic 
tasks that the agent can perform and the Plan-

ning and Control Module serves as the brain 
of the agent; it uses information provided by 
the other modules to plan, initiate tasks, make 
decisions, and achieve the agent’s goals.

MATISSE defines virtual agents for each 
micro- and macro-level element used in the 
ITS. Vehicle agents simulate the behavior of 
human drivers; have individual goals such as 
arriving at some destination in a reasonably 
short time; influence other agents such as turn-
ing signals and changing lanes; and are governed 
by environmental norms and constraints such 
as speed limits and traffic signals. Traffic light 
and traffic collection agents are aware of and 
influence nearby vehicles; are able to perceive 
and adapt to changing conditions; and work 
collaboratively to achieve certain objectives. 
Finally, traffic tower agents autonomously 
manage and control their traffic area, including 
the vehicles and traffic devices they enclose.

In addition to these virtual agents, and for 
software design purposes, it is necessary to 
introduce two design related concepts: a cell 
is a repository that encompasses all informa-

Figure 2. Virtual agent architecture
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tion related to a traffic area. A cell controller 
is a special purpose agent whose main role is 
to consistently provide virtual agents located 
within its cell with a correct perception of their 
surroundings. This is a complex and critical role 
in any realistic simulation. More information 
on this topic can be found in (Mili & Steiner, 
2007). It is important to note that a cell controller 
does not correspond to a real world concept.

3.2.1. High Level Architecture

As shown in Figure 3, MATISSE’s high level 
architecture includes three main components: 
the Agent-Environment System (AES) creates 
simulation instances; the Data Management 
System (DMS) stores and processes information 
collected from the AES; and the Visualization 
Framework receives information from the DMS 
and creates 2D or 3D images of the simulation.

3.2.2. MATISSE’s Virtual Agent 
Platforms

The four types of agents identified by MATISSE 
are naturally managed by four distinct agent 
platforms within the Agent-Environment Sys-
tem component. The Virtual Vehicle Platform 
manages mobile agents that represent vehicles. 
Vehicle-agents are created by the Vehicle-Agent 
Management Component, and vehicle-agents 
communicate with each other through the 
Vehicle-Vehicle Message Transport Service. 
The Virtual Traffic Device Platform manages 
stationary agents that represent traffic lights, 
relays and information collection devices. The 
Traffic-Device-Agent Management Component 
creates and manages traffic-device-agents 
within the simulation while Device-Device Mes-
sage Transport Service handles communication 
between these stationary traffic-agents. The 

Figure 3. Matisse high level architecture
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Virtual Tower Platform creates and manages 
the hierarchical infrastructure of traffic-tower-
agents. Finally the Simulated Environment 
Platform creates and manages cell controllers. 
The Environment Agent Management Compo-
nent creates cell controllers, assigns them to a 
cell, and maintains the cell controller hierarchy 
for the simulation.

4. SPECIFYING 
MATISSE IN ALLOY

Due to the scale and complexity of the simula-
tion architecture, from a software engineering 
perspective, we found it necessary to formally 
specify and validate various simulation prop-
erties before starting the implementation of 
MATISSE. In this section we briefly introduce 
the Alloy language (Jackson, 2002) and present 
a specification of the simulation properties of 
MATISSE in Alloy.

4.1. Overview of Alloy

In the past two decades, several formalisms 
have been proposed for multi-agent systems 
(e.g., temporal logic, multi-modal logic). 
These formalisms are generally abstract and 
not related to concrete computational models 
(D’Inverno et al., 1997). Other approaches have 
used traditional formal languages such as Z and 
CSP (Brazier, Dunin-Keplicz, Jennings, Treur, 
& Lesser, 1995; Luck & D’Inverno, 2001). 
While providing an accessible notation, these 
formalisms lack the diagrammatic representa-
tion and tool support necessary to effectively 
analyze models.

Alloy is a specification language based 
on set theory and first-order relational logic 
(Jackson, 2002). The language has a simple 
and concise syntax that can represent complex 
structural properties and behavior. It comes with 
an Analyzer, a powerful, integrated tool for 
compiling and analyzing models. The Analyzer 
supports two types of automatic analysis: 1) 
the search for an instance that satisfies all the 
constraints and relations specified in a model; 
2) the identification of a counterexample that 

violates the assertions specified in a model. 
Both analysis are performed within a user de-
fined scope that bounds the cardinality of entity 
sets in instances of the model. Outputs can be 
graphically depicted using the visualizer and 
evaluated using the command-line evaluator.

Alloy has been used in both industry and 
academia (Coppit & Sullivan, 2000; Dolby et 
al., 2007; Jackson & Vaziri, 2000). Jackson and 
Vaziri (2000) have proposed an approach to 
verify Java methods in Alloy. At IBM, a subset 
of Alloy has been used to develop a technique 
for efficient checking of data structure invari-
ants (Dolby et al., 2007). Alloy was also used 
in (Coppit, Yang, Khurshid, Le, & Sullivan, 
2005) to test and find bugs in Galileo, a dynamic 
fault tree analysis tool used at NASA (Coppit 
& Sullivan, 2000).

4.2. MATISSE Metamodel

For the purpose of specifying MATISSE in 
Alloy, we introduce a set of related concepts 
based on the discussion presented in Section 
3. Figure 4 depicts the traffic domain concepts 
of the simulation. It describes the different 
types of virtual agents, their environment and 
organizational relationships. In this model, the 
Virtual Environment consists of Traffic Areas 
and represents the environment where Virtual 
Agents are situated in. A Tower provides guid-
ance to virtual agents within its managed traffic 
area while being able to collaborate with other 
towers.

Figure 5 depicts Cells and Cell Controllers 
as previously discussed in Section 3. In addition, 
it defines Communication Medium as an abstrac-
tion of the communication mechanisms for 
vehicle to vehicle and vehicle to traffic infra-
structure interactions. The relation vicinity 
represents a virtual agent’s range of communi-
cation.

4.3. Specification of MATISSE 
Static Properties

The static properties of a model describe enti-
ties and their relationships. In Alloy, these are 
specified through the signature declaration.
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Figure 4. Traffic metamodel

Figure 5. Simulation metamodel
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For example, in the following specifica-
tion excerpt, module TrafficSimulation Entity 
specifies vehicle-agents, traffic-light-agents, 
and tower-agents. It also specifies VirtualEn-
vironment, TrafficArea, Cell, CellController, 
and CommunicationMedium. The one keyword 
constraints the model to one virtual environ-
ment. Simulation events (both external and 
internal) are specified by Event and emergency 
alerts are specified by Alert.

1 module TrafficSimulationEntity
2 abstract sig VirtualAgent{}
3 sig Vehicle extends VirtualAgent{}
4 sig TrafficLight extends VirtualAgent{}
5 sig Tower extends VirtualAgent{}
6 one sig VirtualEnvironment{}
7 sig TrafficArea{}
8 sig Cell{}
9 sig CellController{}
10 sig CommunicationMedium{}
11 sig Event{}
12 sig Alert extends Event{}

The following specification fragment 
shows a partial specification of MATISSE’s 
model. module TrafficSimulation makes use 
of the elements defined in module Traffic-
SimulationEntity to specify the relations and 
constrains of the model. An example of a rela-
tion, in sig Simulation, is guide that corresponds 
to the relationship between tower-agents and 
virtual-agents (e.g., vehicle-agents, traffic-light-
agents). The aggregation of module Traffic-
SimulationEntity and TrafficSimulation makes 
up the complete MATISSE simulation model.

1 module TrafficSimulation
2 open TrafficSimulationEntity
3 sig Simulation{ 
4 dividedIntoArea: VirtualEnvironment one 
5   → TrafficArea,
6   guide: Tower lone → VirtualAgent,
7   manage: Tower one → one TrafficArea,
8   contain: TrafficArea one → VirtualAgent,
9   towerCollaborate: Tower → Tower, 

10   ccCollaborate: CellController → Cell-
Controller,

11   dividedIntoCell: VirtualEnvironment one 
→ Cell,

12   ccManage: CellController one → one Cell,
13   cellContain: Cell lone → VirtualAgent,
14   influence: VirtualAgent → Event → Cell-

Controller,
15   perception: CellController → VirtualAgent,
16   knows: VirtualAgent → Event, 
17   vicinity: CommunicationMedium → 

VirtualAgent 
18     → VirtualAgent, 
19   transmitted: VirtualAgent → Event 
20     → CommunicationMedium,
21   relayed: CommunicationMedium → Event 

→VirtualAgent,
22   sent: VirtualAgent → Event → Tower,
23   notified: Tower → Event → VirtualAgent,
24   propagated: Tower → Event → Tower
25 }{
26 ...
27   contain - (TrafficArea \
28     → (VirtualAgent - Tower)) = ~manage 
29   all va: (VirtualAgent - Tower) | one t: Tower | 
30     t → va in guide
31   no t: Tower | t → t in guide
32   all t, t’: Tower | 
33   not ((t → t’ in guide) and (t’→ t in guide))
34   towerCollaborate = ~towerCollaborate
35   ...
36 }

Alloy enables the precise specification 
of static properties such as “each tower-agent 
manages a virtual traffic area”. Using relation 
multiplicities, manage: Tower one → one Traf-
ficArea specifies a one-to-one relation between 
tower and traffic area elements. Further, the 
constraint contain − (TrafficArea → (VirtualA-
gent − Tower)) = ~manage ensures that each 
tower-agent is assigned to a unique traffic area, 
and that each area is uniquely associated to its 
tower-agent.
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4.4. Specification of MATISSE 
Dynamic Properties

In Alloy, operations are specified through 
predicates, which relate valid instances of 
Simulation through a change in its composi-
tion. For instance, pred sendMessage makes 
use of the function fun getTransmittedMessage 
to add the relation between a virtual agent and 
the communication medium to s in order to 
produce s’, in which s and s’ denote the before 
and after states of Simulation.

1 pred sendMessage[va: VirtualAgent, s, s’: 
Simulation]{

2   s’.transmitted = s.transmitted 
3   + getTransmittedMessage[va, s]
4 }
5 
6   fun getTransmittedMessage[va: VirtualA-

gent, 
7   s:Simulation]: VirtualAgent → Event 
8   → CommunicationMedium {
9    (s.knows → CommunicationMedium) 
10  - ((VirtualAgent - va) → Event → Com-

municationMedium)
11 }

Thus far, the presented specification 
produces arbitrary, unrelated instances of the 
MATISSE simulation model. In order to model 
the system behavior, it is necessary to define 
relations between instances and make use of 
execution traces. To produce execution traces, 
we specify a linear ordering over Simulation 
elements (see Figure 6).

This is achieved by importing the library 
module util/ordering. This module includes 

functions first, next, and last. As depicted by 
Figure 6 (b), first returns the first element S1, 
s1.next returns S2 and s2.next returns S3, and 
last returns the last element S3.

The following fragments of MATISSE’s 
specification illustrate the new constraints added 
to the model to enable execution traces. The pred 
init defines the initial conditions (i.e., the initial 
composition) and pred inv defines invariants 
(i.e., properties that never change during an 
execution trace) of Simulation. Any adjacent 
Simulation in the ordering is related by fact 
traces. For instance, the following trace frag-
ment specifies short-range vehicle-to-vehicle 
and vehicle-to-infrastructure interactions. If 
a vehicle has transmitted a message in s, then 
the message is relayed to its recipients in s’ 
through operation relayMessage (lines 18 to 
23). Similarly, if a message has been relayed 
in s, then the message is stored in each recipi-
ent’s knowledge base in s’ through operation 
receiveMessage (lines 25 to 30).

1  module TrafficSimulation
2  open util/ordering[Simulation] as t
3 
4  pred init[s:Simulation]{ ... }
5  pred inv[s, s’:Simulation]{
6   s’.dividedIntoArea = s.dividedIntoArea
7   s’.guide = s.guide
8   ...
9 }
10 fact traces {
11   init[first]
12 
13   all s:Simulation - last | let s’ = s.next { 
14     inv[s,s’]
15   …

Figure 6. (a) Unrelated instances of the model and (b) Execution trace of the model
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16    // vehicle-to-vehicle interactions
17    // and vehicle-to-traffic-devices interac-

tions 
18   let va=((s.transmitted).Communication-

Medium).Event | {
19  (va.(getVicinity[va, s]) 
20  not in Event.(CommunicationMedium.

(s.relayed))) 
21  => relayMessage[va, s, s’] 
22  else s’.relayed = s.relayed
23 }
24 
25 let va = (Event.(CommunicationMedium.

(s.relayed)) 
26  + Event.(Tower.(s.notified)) 
27  - (s.knows).Event) | {
28  (va != none) 
29  => receiveMessage[va, s, s’] 
30 } 
31 
32  // Information Passing within an area
33  …
34 
35  // Event Propagation across traffic areas 
36  ...
37  }
38 }

The next specification excerpt describes 
how information is passed within a traffic area. 
For example, upon facing an unpredicted event 
in s, a vehicle sends an alert to its traffic tower 
in s’ through operation sendEvent (lines 2 to 11). 
This operation modifies the state of Simulation 
by adding a new element to relation sent. In a 
subsequent step s, this information is used in 
s’ to pass the event information to all virtual 
agents located within the tower’s traffic area 
through operation notifyEvent (lines 13 to 18).

1 // Information Passing within an area
2 let va = (s.knows.Event - Tower) 
3  - Event.(Tower.(s.notified)) | {
4  (va not in ((s.sent).Tower).Event) => 
5  (sendEvent[va, s, s’] 

6  and (towers[va,s’].va).(s’.notified) 
7  = (towers[va,s].va).(s.notified)
8  and (s’.knows - Tower → Event) 
9  = (s.knows - Tower → Event))
10 else (s’.sent = s.sent)
11 } 
12 
13 let t = (Event.(VirtualAgent.(s.sent))) | {
14  (t not in ((s.notified).VirtualAgent).Event) 

=> 
15  (notifyEvent[t, s, s’] and (s’.knows - t → 

Event) 
16  = (s.knows - t → Event)) 
17  else t.(s’.notified) = t.(s.notified) 
18 }

For the purpose of propagating information 
across traffic areas, MATISSE defines interac-
tions between traffic towers. As specified in the 
following excerpt, if a traffic tower is aware 
of an event in s, then the event is propagated 
in s’ to its adjacent towers through operation 
propagateEvent. This operation modifies the 
state of Simulation by adding new elements 
to relation propagated. In a subsequent step s, 
each tower uses this information in s’ to pass 
the event to its virtual agents through operation 
notifyEvent.

1 // Event Propagation across traffic areas 
2 let t = s.knows.Event - (VirtualAgent - Tower) 

| {
3  (t not in ((s.propagated).Tower).Event) => 
4    (propagateEvent[t, s, s’]) 
5  and (t.(s’.towerCollaborate)).(s’.notified) 
6   = (t.(s.towerCollaborate)).(s.notified) 
7   else (s’.propagated = s.propagated) 
8   }
9 
10 let t = Event.(Tower.(s.propagated)) | { 
11  (t not in ((s.notified).VirtualAgent).Event) 

=> 
12  notifyEvent[t, s, s’] 
13  else t.(s’.notified) = t.(s.notified) 
14 } 
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This complete specification allows the 
analysis of the static and dynamic properties of 
MATISSE. In addition, a number of ITS traffic 
scenarios involving collaboration, information 
dissemination, and event propagation can be 
planned and designed to validate MATISSE’s 
traffic model.

5. ANALYZING MATISSE’S 
PROPERTIES

In this section, we discuss how the above men-
tioned Alloy models are verified and validated. 
In the remainder of this paper, the term verifi-
cation is used to refer to consistency checking 
between Alloy specification and MATISSE’s 
design. On the other hand, the term validation is 
used to refer to conformance checking between 
Alloy specification and MATISSE’s high level 
requirements.

5.1. MATISSE’s Properties 
Verification

In this section, we discuss how static and 
dynamic properties of MATISSE are verified. 
In addition to providing model type checking 
features, the Alloy Analyzer allows us to define 
assertions, verify their correctness, and identify 
constraint violations if they exist.

The assertion VehicleSendEventOnly-
ToTowerGuidingIt states that for all instances 
of the Simulation a vehicle or traffic light can 
send an event (through operation sendEvent) 
only to the tower guiding it. No counterexample 
is found for this static property following the 
constraining facts specified in Simulation.

1 assert VehicleSendEventOnlyToTower-
GuidingIt {

2  all s: Simulation | {
3    let va = ((s.sent).Tower).Event | 
4      (va != none) => Event.(va.(s.sent)) = 

(s.guide).va
5   }
6 }

The assertion MessageIsRelayed is an 
example of verification of a dynamic property 
of the model, in which we ensure consistency 
between adjacent instances of Simulation. It 
states that if a vehicle has transmitted a message 
in s, then the message must be relayed to the 
vehicle’s vicinity in s’. No counterexample is 
found for this property.

1 assert MessageIsRelayed {
2  all s: Simulation, s’: s.next | {
3  let va = ((s.transmitted).Communication-

Medium).Event |
4 let e = (va.(s.transmitted)).Communica-

tionMedium |
5    let vicinity = getVicinity[va, s] |
6      (va != none) => va.vicinity 
7  in e.(CommunicationMedium.(s’.relayed)) 
8   }
9 }

The assertion receiveMessageIsDeter-
ministic ensures that pred receiveMessage is 
determinitic (i.e., each simulation s is associated 
with at most one simulation s’). It states that if 
a vehicle has received a message in both s’ and 
s” after the message was relayed in s, then its 
knowledge base in s’ must be the same as in s” 
(i.e., s’.knows = s”.knows). No counterexample 
is found for this property.

1 assert receiveMessageIsDeterministic{
2  all s, s’,s’’: Simulation, va: VirtualAgent |
3  r e c e i v e M e s s a g e [ v a , s , s ’ ]  a n d 

receiveMessage[va,s,s’’] 
4  => (s’.knows = s’’.knows)
5 }

The assertion initImpliesInv checks that 
the invariants of the model hold for all initial 
instances. This assertion states that pred init on 
any instance s implies the invariants between 
instances s and s.next in the execution trace. 
No counterexample is found for this property.
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1 assert initImpliesInv{
2  all s:Simulation, s’: s.next | init [s] => 

inv[s,s’]
3 }

Finally, the assertion sendMessagePre-
servesInv states that operation pred sendMes-
sage preserves the invariants between ordered 
instances specified in the model. No counter-
example is found for this property.

1 assert sendMessagePreservesInv{
2  all s:Simulation, s’: s.next, va: VirtualAgent |
3  sendMessage[va,s,s’] => inv[s,s’]
4 }

5.2. Traffic Scenarios Validation

The following ITS scenarios are used to validate 
the simulation properties of MATISSE. For 
each case, we present a textual description of 
the scenario followed by an analysis of the 
execution traces generated from the Alloy 
specification. These execution traces validate 
simulation properties such as virtual agent 
perception, agent-to-agent interaction, and 
event propagation.

5.2.1. Scenario 1: Safety 
Enhancement and Congestion 
Reduction on a one-way road

The scenario depicted in Figure 7 demon-
strates the suitability of MATISSE for safety 
improvement and congestion reduction. This 
ITS scenario consists of vehicles driving on a 
one-way road. An event (e.g., an accident, an 
obstruction on the road, or any other abnormal 
condition) has occurred in Traffic Area A0, and 
vehicle V0 perceives the event within its field 
of vision shown as a cone. Under this scenario, 
V0 takes the following steps: 1) it informs all 
vehicles located in its close vicinity about the 
perceived event through vehicle-to-vehicle 
interactions. The notified vehicles are able to 
take the necessary actions to avoid a major ac-
cident. 2) It informs traffic tower T0 about the 
perceived event via vehicle-to-infrastructure 
interactions.

After deliberation and based on the event 
characteristics, T0 alerts the vehicles located 
in A0 (i.e., V1 to V4) about the event. T0 also 
determines the potential impact of this event 
on neighboring traffic areas and informs the 
adjacent traffic tower T1 of the event. T1 de-

Figure 7. Scenario for safety enhancement and congestion reduction
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liberates, and informs all vehicles located 
within Traffic Area A1 of the event and guides 
them in their choice of the best alternate route 
to follow (to avoid congestion). All vehicles in 
the traffic area make use of the broader traffic 
information to improve the overall safety con-
dition and avoid traffic congestion.

The execution of the Alloy model for this 
scenario produces the execution trace consisting 
of the following sets of elements:

this/Simulation = {Simulation0, Simulation1, 
Simulation2,
    Simulation3, Simulation4, Simulation5}
t/VirtualAgent = {t/Tower0, t/Tower1, t/Ve-
hicle0, 
    t/Vehicle1, t/Vehicle2, t/Vehicle3, 
    t/Vehicle4, t/Vehicle5, t/Vehicle6, 
    t/Vehicle7, t/Vehicle8}
t/TrafficArea = {t/TrafficArea0, t/TrafficArea1}
t/CommunicationMedium = {t/Communica-
tionMedium0}
t/Event = {t/Event0}

These sets (e.g., t/VirtualAgent, t/Traf-
ficArea) correspond to the signatures defined 
in the specification (e.g., sig VirtualAgent, sig 

TrafficArea) and the elements (e.g., t/Tower0, 
t/TrafficArea0) are arbitrarily assigned to the 
sets at execution time. For the purpose of this 
section, sets such as VirtualEnvironment, 
CellController, and Cell are omitted from the 
discussion.

Figure 8 shows the visual representation 
of the last instance of the execution trace (i.e., 
Simulation5). Each element is depicted as a 
geometric figure, and each relation (e.g., knows, 
guide) as an arrow. The visual representations 
of the intermediate instances of the trace 
(i.e., Simulation0, Simulation1, Simulation2, 
Simulation3, and Simulation4) are omitted. The 
following steps describe in detail the complete 
execution trace.

In Simulation0, Vehicle0 perceives an Event 
through its sensors. It stores this information 
into its knowledge base as reflected by relation 
knows. In Simulation1, Vehicle0 broadcasts the 
event to the CommunicationMedium, and com-
municates the event information to its virtual 
traffic tower. This is reflected by relation 
transmitted[Event] between Vehicle0 and Com-
municationMedium, and relation sent[Event] 
between Vehicle0 and Tower0.

Figure 8. Last instance of the execution trace for Scenario 1
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In Simulation2, Tower0 stores the event 
information into its knowledge base as reflected 
by relation knows between Tower0 and Event. 
The CommunicationMedium proceeds by 
relaying the event to Vehicle0’s vicinity (i.e., 
Vehicle1, Vehicle2). This is represented by 
relations vicinity[Vehicle0] and relayed[Event] 
between Communication Medium and vehicles 
Vehicle1 and Vehicle2. Also, Tower0 commu-
nicates Event to all vehicles in its traffic area 
as depicted by relations notified[Event].

In Simulation3, vehicles vehicle1 and 
vehicle2 store the relayed event (received via 
CommunicationMedium) into their knowledge 
bases. In addition, all vehicles within Tower0’s 
traffic area store the event notification (received 
via Tower0) into their knowledge bases. This is 
reflected by relations knows between Vehicle0, 
Vehicle1, Vehicle2, Vehicle3, Vehicle4, Vehicle5 
and Event. Also, Tower0 uses its acquaintance 
model represented by relation towerCollaborate 
to identify the neighboring tower that might 
be affected by the event (in this case, Tower1) 
and passes Event on to it. This is reflected by 

relation propagated[Event] between Tower0 
and Tower1.

In Simulation4, Tower1 stores Event into 
its knowledge base as reflected by relation 
knows between Tower1 and Event. Also, Tower1 
communicates Event to its local vehicles as 
represented by relation notified[Event]. Finally, 
in Simulation5, all vehicles within Tower1’s 
traffic area store the event information received 
into their knowledge bases. This is reflected by 
the relations knows between Vehicle5, Vehicle6, 
Vehicle7, Vehicle8, and Event.

5.2.2. Scenario 2: Intersection 
Collision Avoidance

The scenario depicted in Figure 9 demonstrates 
the suitability of MATISSE for the simulation 
of short-range communication between ve-
hicles (Xu, Mak, Ko, & Sengupta, 2004) where 
upstream communication with towers is not 
necessary. In this scenario, vehicle V1 wants 
to make a left turn while there is an obstruction 
blocking its vision from oncoming vehicles on 

Figure 9. Scenario for intersection collision avoidance
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the right of the intersection. Using vehicle-to-
vehicle communication, vehicle V1 is alerted 
about vehicle V0’s presence, thus allowing 
vehicle V1 to take necessary actions to avoid 
a potential accident.

The execution of the Alloy model for this 
scenario produces the execution trace consist-
ing of the following sets of elements:

this/Simulation={Simulation0, Simulation1, 
Simulation2,
    Simulation3}
t/VirtualAgent={t/Tower0, t/Vehicle0, t/Ve-
hicle1}
t/TrafficArea={t/TrafficArea0}
t/CommunicationMedium={t/Communica-
tionMedium0}
t/Alert={t/Alert0}

Figure 10 shows a visual representation of 
the complete execution trace. In Simulation0, 
Vehicle0 contains Vehicle1 in its vicinity as 
reflected by relation vicinity[Vehicle0]. In Simu-
lation1, Vehicle0 broadcasts an alert (using a 
standard dedicated short-range communication 
mechanism) warning the surrounding vehicles 
of its presence near the road intersection. This 
is reflected by relation transmitted[Alert] be-
tween Vehicle0 and CommunicationMedium. In 
Simulation2, the CommunicationMedium uses 
Vehicle0’s vicinity to relay the alert to Vehicle1, 
as depicted by relation relayed[Alert]. Finally, 
in Simulation3, although Vehicle0 is out of 
Vehicle1’s field of vision, Vehicle1 becomes 
aware that Vehicle0 is approaching the intersec-
tion, as reflected by relation knows between 
Vehicle1 and Alert.

6. EVALUATION OF THE 
APPROACH

In this section, we discuss our evaluation of 
the approach used to specify and analyze MA-
TISSE’s properties.

Abstraction. By abstracting from imple-
mentation details, Alloy helped us focus on 
the most important aspects of system design 

and explore design alternatives. For instance, 
it allowed us to revisit various responsibilities 
assigned to agents when modeling agent-to-
agent interactions.

Process. We have started the design activity 
with a small model containing just a few signa-
tures and constraints, and progressed by adding 
detail iteratively. At each step, key aspects of the 
system were modeled, checked, and simulated 
without writing a single line of code.

Model Execution. The execution of traces 
is a valuable tool that allowed us to identify 
several conceptual inconsistencies of the model 
such as a traffic tower incorrectly passing an 
event information to a vehicle outside its traffic 
area. The step-by-step scenario execution en-
abled us to analyze the various states in which 
the traffic model can be and validates its high 
level properties.

Analysis. To make analysis feasible, it is 
necessary to define a scope that restricts the 
number of elements of each signature. This 
restriction comes at a cost: counterexamples 
might go undetected if they are outside of the 
scope. Nevertheless, as mentioned by Jackson 
(2011), it is likely that invalid assertions have 
counterexamples within small scopes. For the 
purposes of verifying MATISSE’s properties, 
we found that the analysis provided by Alloy 
was sufficient to produce meaningful results. 
For instance, the verification of the assertions 
VehicleSendEventOnlyToTowerGuidingIt 
(A1), MessageIsRelayed (A2) and receiveMes-
sageIsDeterministic (A3) produce the logical 
clauses shown in Table 1 and the total analysis 
time depicted in Figure 11. As stated earlier no 
counterexamples were found for these asser-
tions. Despite the exponential growth of the 
search space and time, our experimental results 
show that even small scopes produce large 
search spaces. This is sufficient to increase our 
confidence in the correctness of the model. To 
illustrate this, we introduced inconsistencies 
in the model and identified counterexamples 
within scopes of six elements per signature.

Separation of Concerns. The notion of 
scope is decoupled from the model, allowing 
us to analyze different scenarios without 
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Figure 10. Complete execution trace for scenario 2
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modifying the model itself. For example, the 
following excerpt shows the run commands 
used to produce the execution traces for each 
of the scenarios discussed in Section 5. In 
Scenario 1 (line 2) we instructed the Analyzer 
to produce an execution trace with 2 Towers 
and 9 Vehicles in 6 Simulation steps, while in 
Scenario 2 (line 5) we instructed the Analyzer 
to produce an execution trace with 1 Tower and 
2 Vehicles in 4 Simulation steps. This separation 
resulted in more robust models enabling us to 
specify MATISSE’s properties independently 
of analysis concerns.

1  // Scenario 1
2  run Show for 2 Tower, 9 Vehicle but 6 

Simulation
3
4  // Scenario 2
5  run Show for 1 Tower, 2 Vehicle but 4 

Simulation

Formalism. Despite its apparent simplic-
ity, a strong foundation in set theory and logic 
is essential to specify complex interactions 
involving communication and cooperation 
among agents in Alloy.

Table 1. Number of logical clauses generated for assertions checked on the MATISSE model 

Scope A1 A2 A3

6 491,653 484,616 494,540

8 1,074,997 1,057,730 1,079,548

10 2,011,318 1,976,925 2,017,573

12 3,370,218 3,310,027 3,378,025

14 5,239,118 5,142,681 5,248,133

16 7,620,086 7,475,179 7,629,773

18 10,774,265 10,566,888 10,783,896

20 14,521,253 14,235,630 14,529,908

Figure 11. Scope vs. analysis time for assertions checked on the MATISSE model
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Real-time Properties. We experienced 
difficulty coping with the timing aspects of 
the simulation. For instance, there is no built 
in mechanism in Alloy to specify and verify 
real-time properties. Hence, it is not possible 
to verify that a given communication occurs 
in due time among agents. Although Alloy 
includes some basic temporal constraints, it is 
less expressive than traditional temporal logics 
for specifying complex temporal properties 
such as instantaneous transitions and interval 
properties of system states. For these proper-
ties, approaches such as duration calculus, 
timed petri-nets, and timed process algebras 
proved to be more suitable (Bihler & Vogler, 
2004; Cacciagrano & Corradini, 2004; Zhou 
& Hansen, 2004).

Based on these observations, we believe 
that in order to specify complex real-time 
systems, it is necessary to complement our 
modeling approach with a notation such as 
Statecharts (Harel, 1987). This follows the 
traditional belief that functional and temporal 
behaviors are orthogonal concerns that can be 
naturally modeled using different notations 
(Broy, 2007; Cacciagrano & Corradini, 2004).

Statecharts is a visual diagrammatic nota-
tion with a formal semantic foundation that 
has been extended to tackle hard real-time 
systems (Burmester & Giese, 2005; Giese & 
Burmester, 2003). It provides mechanisms to 
model state hierarchy and concurrency, and 
thus allows for the definition of compact and 
expressive models.

7. RELATED WORK

7.1. Multi-Agent Systems 
Formalisms

As stated in Section 4, several formalisms have 
emerged for the specification of multi-agent 
systems. In general, each of them provides a 
different emphasis and no single formalism 
seems to be suitable to model all aspects of 
the problem (e.g., functional, reactive, inten-
tional). As identified in (D’Inverno et al., 1997), 
these formalisms can be grouped under three 

categories: temporal logic, modal logic, and 
well-known formal specification languages 
from traditional software engineering.

Temporal logic has been used to reason 
about liveness and safety properties of agent 
systems (Wooldridge, 2009). For instance, 
branching time temporal logic such as CTL 
and its extensions have been used to specify 
and verify dynamic properties of multi-agent 
systems (Fisher & Wooldridge, 1997; Lomuscio, 
Qu, & Raimondi, 2009; Wooldridge & Jennings, 
1999). However, their inherent complexity 
hinders their wide adoption as a tool for the 
specification of large-scale multi-agent systems 
(Wooldridge, Jennings, & Kinny, 2000).

Another approach uses modal logic to 
specify cognitive properties (beliefs, goals, 
tasks) of agents. In Wooldridge and Jennings 
(1999), a framework based on a quantified multi-
modal logic has been proposed to characterize 
the agent’s mental states (e.g., states triggering 
agents to engage in cooperative actions). These 
formalisms are generally abstract and not related 
to concrete computational models, making their 
application for mainstream multi-agent system 
development difficult (D’Inverno et al., 1997).

In contrast, well-known formal specifi-
cation approaches are more accessible and 
appropriate for describing software systems at 
different levels of abstraction. For example, Z 
has been used to define the basis of a framework 
for specifying functional properties of multi-
agent systems (D’Inverno & Luck, 1998; Luck 
& D’Inverno, 2001). However, these approaches 
do not naturally lend themselves to executable 
specifications and lack complete tool suites for 
automated analysis. Alloy overcomes these 
limitations by providing model type checking 
and animation directly built-in in the Analyzer.

7.2. Verification of  
Multi-Agent Systems

Besides specifying the static and dynamic 
properties of a complex system, it is important 
to consider the problem of verifying such 
specifications. Model checking (Clarke, 1997) 
has been widely used for the verification of 
MAS systems (Benerecetti & Cimatti, 2002; 
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Bordini, Fisher, Visser, & Wooldridge, 2006; 
Rao & Georgeff, 1993; Van Der Hoek & 
Wooldridge, 2002). Given a finite state model 
M of a system and a property P  expressed via 
a logical formula ϕ

P
 to be checked, the 

model checking problem is to verify whether 
or not M

P
 ϕ .

Although inspired by model checking, 
analysis in Alloy relies on recent advances in 
SAT (Boolean satisfiability) techniques. The 
Analyzer translates Alloy specifications into 
Boolean constraints which are given as input 
to SAT solvers. As opposed to model checkers, 
the Analyzer does not exhaustively search the 
entire state space. Also, since only traces of 
bounded length are considered, the Analyzer 
finds counterexamples faster than a model 
checker due to the depth-first nature of the SAT 
solver (Jackson, 2011).

8. CONCLUSION

MATISSE is a multi-agent based simulation 
platform designed to specify and execute traf-
fic simulations for a new generation of ITS. 
MATISSE’s unique features include its open, 
decentralized and distributed environment; the 
ability of agents to perceive their surroundings 
in simulated real time; and the ability to execute 
micro- and macro-level ITS scenarios within 
the same framework.

In this paper we discussed how Alloy, a 
modeling language based on set theory and first 
order logic, was used to specify and analyze the 
static and dynamic properties of MATISSE. 
Future work includes determining how to 
integrate Alloy models with Statecharts and 
evaluating the scalability of Alloy specifications 
for complex interaction patterns.
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