
InternatIonal Journal of
agent technologIes and systems

Table of Contents

October-December 2012, Vol. 4, No. 4

	 Editorial	Preface
i	 What	Multi-Agent	Social	Simulation	Can	Do?
	 Yu	Zhang,	Department	of	Computer	Science,	Trinity	University,	San	Antonio,	TX,	USA

	 Research	Articles
1	 An	Agent-Based	Model	of	the	Spread	of	Devil	Facial	Tumor	Disease	in	an	Isolated	

Population	of	Tasmanian	Devils
 Charles	E.	Knadler,	Department	of	Computing/Networking	Sciences,	Utah	Valley	University,	
	 		Orem,	UT,	USA

17	 Asynchronous	Modeling	and	Simulation	with	Orthogonal	Agents
	 Roman	Tankelevich,	Department	of	Mathematics	and	Computer	Science,	Colorado	School	
	 		of	Mines,	Golden,	CO,	USA

38	 On	Modeling	and	Verification	of	Agent-Based	Traffic	Simulation	Properties	in	
Alloy

 Junia	Valente,	Department	of	Computer	Science,	University	of	Texas	at	Dallas,	
	 		Richardson,	TX,	USA
	 Frederico	Araujo,	Department	of	Computer	Science,	University	of	Texas	at	Dallas,		 	

		Richardson,	TX,	USA
	 Rym	Z.	Wenkstern,	Department	of	Computer	Science,	University	of	Texas	at	Dallas,		

		Richardson,	TX,	USA
Copyright
The International Journal of Agent Technologies and Systems (ISSN 1943-0744; eISSN 1943-0752).
Copyright © 2012 IGI Global. All rights, including translation into other languages reserved by the
publisher. No part of this journal may be reproduced or used in any form or by any means without written
permission from the publisher, except for noncommercial, educational use including classroom teaching
purposes. Product or company names used in this journal are for identification purposes only. Inclusion
of the names of the products or companies does not indicate a claim of ownership by IGI Global of the
trademark or registered trademark. The views expressed in this journal are those of the authors but not
necessarily of IGI Global.

IJATS is currently listed or indexed in: ACM Digital Library; Bacon's Media Directory; Cabell's Directories;
DBLP; GetCited; Google Scholar; INSPEC; JournalTOCs; MediaFinder; The Standard Periodical Directory;
Ulrich's Periodicals Directory

38 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Alloy, Formal Specification, Intelligent Transportation Systems (ITS), Multi-Agent Systems,
Traffic Simulation, Verification

1. INTRODUCTION

For the past twenty years, Intelligent Trans-
portation Systems (ITS) have been considered
as possible solutions for traffic safety and
congestion problems. An ITS is defined as
“the application of advanced sensor, computer,
electronics, and communication technologies
and management strategies in an integrated
manner to increase the safety and efficiency
of the surface transportation system” (Meyer,
1997). The work presented in this paper is

based on a novel, multilayered integrated ITS
for safety improvement and congestion reduc-
tion (Boyraz et al., 2009a; Wenkstern, Steel,
Daescu, Hansen, & Boyraz, 2009a). In this ITS
infrastructure traffic is viewed as a bottom-up
phenomenon that is the consequence of indi-
vidual decisions at the micro-level, and traffic
management as a top-down activity that is the
result of decisions taken at the macro-level.
Both macro- and micro-levels consist of multi-
agent based infrastructures where autonomous
traffic entities continuously communicate and
interact with each other to achieve traffic safety
and efficiency goals. Even though some of the

On Modeling and Verification
of Agent-Based Traffic

Simulation Properties in Alloy
Junia Valente, Department of Computer Science, University of Texas at Dallas,

Richardson, TX, USA

Frederico Araujo, Department of Computer Science, University of Texas at Dallas,
Richardson, TX, USA

Rym Z. Wenkstern, Department of Computer Science, University of Texas at Dallas,
Richardson, TX, USA

ABSTRACT
The advances in Intelligent Transportation Systems (ITS) call for a new generation of traffic simulation models
that support connectivity and collaboration among simulated vehicles and traffic infrastructure. In this paper
we introduce MATISSE, a complex, large scale agent-based framework for the modeling and simulation of
ITS and discuss how Alloy, a modeling language based on set theory and first order logic, was used to specify,
verify, and analyze MATISSE’s traffic models.

DOI: 10.4018/jats.2012100103

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 39

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

proposed ITS components have already been
implemented, the overall infrastructure is still
in its conceptual phase.

Given the critical role of interactions among
ITS components and their independent decision
making capabilities, it is essential to simulate
traffic scenarios under nominal and extreme
conditions before deploying the physical in-
frastructure on roads and highways.

MATISSE (Multi-Agent based TraffIc
Safety Simulation systEm) is an agent-based
“tailor made” simulation framework designed
to provide a platform for the execution of such
scenarios. MATISSE provides means to ana-
lyze and evaluate different ITS configuration,
collaboration, and control strategies. Before
embarking on the full-scale development of
this large-scale, distributed, multi-agent based
simulation framework, the specification and
validation of MATISSE’s properties proved to
be necessary.

Alloy is a modeling language based on set
theory and first order logic that has been used in
both industry and academia to validate a wide
variety of systems (Coppit & Sullivan, 2000;
Dolby, Vaziri, & Tip, 2007; Jackson & Vaziri,
2000). The language has a simple and concise
syntax that comes with a powerful, integrated
tool for compiling and analyzing models.

The purpose of this paper is to present a
formalization of the MATISSE model in Alloy,
and discuss how the model’s core properties are
verified using Alloy’s Analyzer. In particular,
we discuss an approach to produce execution
traces from the specification. These traces
serve two purposes: they allow for a thorough
analysis and evaluation of the traffic model;
and demonstrate the suitability of MATISSE
for the simulation of ITS scenarios.

In the following section we give an over-
view of traffic simulation systems. In Section
3 we briefly present the proposed ITS and
MATISSE’s high level architecture. In Section
4 and section 5 we discuss how Alloy has been
used to specify, verify, and analyze MATISSE’s
model. In Section 6 we present an evaluation
of the approach. Finally, in Section 7 we give
an overview of related works.

2. TRAFFIC SIMULATION

There are two major approaches to simulate
traffic scenarios. Macroscopic models (Babin,
Florian, James-Lefebvre, & Spiess, 1982; Lieu,
Santiago, & Kanaan, 1992) describe traffic
as a physical flow of fluid and make use of
mathematical equations relating macroscopic
quantities (e.g., traffic density, flow rate and
average velocity). These models assume ra-
tional driving behavior and fairly consistent
traffic streams and thus are unfit to model real
traffic operations.

In contrast, microscopic models con-
sider the characteristics of individual traffic
elements (e.g., vehicles, traffic lights, traffic
signals, driver behavior) and their interactions.
Typical microscopic models are based on ana-
lytical techniques such as queuing analysis and
shock-wave analysis (Helbing & Tilch, 1998).
They assume traffic elements with predefined
behavioral models. This is a limitation since
realistic traffic simulation scenarios call for the
modeling of unexpected behavior and unfore-
seen environmental conditions. The multi-agent
paradigm alleviates this limitation by providing
means to address non-deterministic behavior in
non-deterministic, unpredictable environments.

Over the last decade, a large number of
agent-based traffic simulation systems have
been proposed. Some focus on specific small
scale traffic problems such as driver behavioral
modeling, tactical driving, and intersection
management (Dresner & Stone, 2008; Rossetti
& Liu, 2005; Sukthankar, Hancock, & Thorpe,
1998) while others attempt to tackle complex
large scale traffic scenarios (Balmer et al.,
2009; Cetin, Nagel, Raney, & Voellmy, 2002;
Galland, Gaud, Demange, & Koukam, 2009).
In this section we restrict our discussion to
those that best compare to MATISSE, namely
MatSim (Balmer et al., 2009), and Transims
(Cetin et al., 2002).

MatSim (Balmer et al., 2009) is an agent-
based framework for modeling transport
demand. MatSim represents individual travel-
ers as agents endowed with predefined plans.
These agents follow a utility based strategy to

40 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

determine their optimal daily plan. Interactions
among agents are implicitly encoded into the
agent’s utility function. In its current version,
traveler agents cannot directly interact with
other agents. In addition, agents are not capable
of perceiving their environment dynamically.
They act upon global environmental knowledge
seeded at initialization time.

Similarly, Transims (Cetin et al., 2002) is
a large-scale microscopic simulation system
for transportation planning and congestion
evaluation. In Transims travelers are modeled
as agents which can walk, drive cars, or use
buses. Traveler agents can decide which plan to
select depending on their current state but they
cannot dynamically perceive their environment.
It is also unclear whether they can interact with
other agents. Transims’ environment is static and
fully observable, thus reducing its capabilities
to model complex and realistic scenarios.

Our work enhances the conventional urban
traffic simulation by proposing a multi-agent
based framework that simulates macro- and
micro-level traffic entities and their interactions
within and across levels. The unique charac-
teristics of MATISSE are: 1) the simulation
environment is open, i.e., non-deterministic,
dynamic, inaccessible and continuous (Rus-
sell & Norvig, 1995). The environment has
mechanisms that allow the simulation of event
propagation. 2) The agents are not given global
environmental knowledge to act upon. They dy-
namically perceive their surroundings through
various senses. 3) At run-time, the user can
change the properties of the simulated agents
(e.g, driver “awake” to driver “asleep”, disable
agent sensors) and the environment (e.g., change
the laws that govern the environment) without
interrupting the simulation. To the best of our
knowledge, no other existing framework offers
this integrated set of features.

A recent system called JaSim (Galland et
al., 2009) was developed along the same prem-
ises as MATISSE. Even though it shares the
same environment structure and similar agent
perception mechanisms, it lacks the advanced
simulation features of event propagation and dy-
namic property modification discussed above.

3. OVERVIEW OF ITS
AND MATISSE

In this section, we briefly present the main
components of the proposed ITS and discuss
MATISSE’s architecture. More detailed discus-
sions on these topics can be found in (Boyraz et
al., 2009a; Wenkstern et al., 2009a; Wenkstern,
Steel, & Leask, 2009b).

3.1. Elements of a Novel ITS

The proposed ITS aims at enforcing communi-
cation, interaction, and collaboration between
various types of elements defined at various
levels of abstraction. In the remainder of this
paper we will use the word “micro-level” ele-
ment to refer to an entity that has very limited
knowledge of the state of the world. In contrast,
a “macro-level” element refers to one that is
aware of a larger portion of the world.

The infrastructure is based upon two un-
derlying concepts:

• In order to manage a large environment
efficiently, it is necessary to partition the
space into smaller defined regions called
traffic area;

• Each traffic area is assigned a tower. A
tower is required to: 1) autonomously
manage environmental information about
its traffic area; 2) be aware of the traffic
elements (e.g., vehicles, traffic devices)
located in its defined area; 3) be able to
interact with local traffic elements to inform
them about changes in their surroundings;
4) be able to communicate with other towers
to inform them of external events.

In order to manage traffic information
efficiently, traffic towers are organized as a
hierarchy (see Figure 1). This structure is par-
ticularly important for the case when towers
need a higher level of knowledge to properly
manage their traffic areas. For example, if
congestion is caused by an accident in an area,
and the micro-level information is insufficient
for the tower to determine the best exit route

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 41

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

for its local vehicles, it will communicate with
a higher level traffic tower to obtain a broader
image of the traffic.

The micro-level entities are classified in
two categories:

• Mobile Context-Aware Intelligent (CAI)
vehicles (Boyraz, Yang, Sathyanarayana,
& Hansen, 2009b). These are vehicles
equipped with devices that allow them to
1) monitor the driver’s behavior in order to
prevent possible accidents; 2) communicate
with other vehicles and traffic devices;
and 3) interact with the traffic tower in-
frastructure to obtain traffic information
and guidance in real time;

• Stationary Context-Aware Intelligent
(CAI) traffic devices. These include
traffic lights, traffic collection devices,
and relay units. They serve the purpose of
improving safety and traffic flow on roads
and highways by providing information
about the physical traffic infrastructure
and congestion condition. Traffic lights
are equipped with adaptive systems that
allow them to 1) interact with the traf-
fic tower infrastructure to obtain traffic
information in real time, 2) communicate
with vehicles for intersection coordination,

and 3) communicate with other traffic light
controllers to improve traffic flow when
necessary. Traffic collection devices are
used on highways to collect information
about traffic, and communicate the infor-
mation to the traffic management system
for further analysis (e.g., identification of a
drunk driver on the highway). Relay units
are used to pass on information between
the various communicating entities when
the physical distance is too great.

3.2. MATISSE Architecture

MATISSE is a “tailor made” multi-agent
based simulation platform designed to specify
and execute simulation models for the above-
mentioned ITS. We define an agent as a software
entity which (Mili, Steiner, & Oladimeji, 2006):
1) is driven by a set of tendencies in the form
of individual objectives; 2) can communicate,
collaborate, coordinate and negotiate with other
agents; 3) possesses resources of its own; 4)
executes in an environment that is partially
perceived; 5) possesses skills and can offer ser-
vices. A virtual agent is an application specific
agent that represents a real world concept (e.g.,
vehicle, traffic device).

Figure 1. ITS super-infrastructure

42 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

As shown in Figure 2, a virtual agent con-
sists of four main modules (Mili et al., 2006).
The Interaction Module handles an agent’s
interaction with external entities and separates
environment interaction from agent interaction.
The Environment Perception Module contains
various perception modules emulating the
agent’s senses and is responsible for perceiv-
ing information about an agent’s environment.
The Agent Communication Module provides an
interface for agent-to-agent communication.
The Knowledge Module is partitioned into Ex-
ternal Knowledge Module (EKM) and Internal
Knowledge Module (IKM). The EKM serves as
the portion of the agent’s memory dedicated to
maintaining knowledge about entities external
to the agent, such as acquaintances and objects
situated in the environment. The IKM serves
as the portion of the agent’s memory dedicated
for keeping information that the agent knows
about itself, including its current state, physical
constraints, and social limitations. The Task
Module manages the specification of the atomic
tasks that the agent can perform and the Plan-

ning and Control Module serves as the brain
of the agent; it uses information provided by
the other modules to plan, initiate tasks, make
decisions, and achieve the agent’s goals.

MATISSE defines virtual agents for each
micro- and macro-level element used in the
ITS. Vehicle agents simulate the behavior of
human drivers; have individual goals such as
arriving at some destination in a reasonably
short time; influence other agents such as turn-
ing signals and changing lanes; and are governed
by environmental norms and constraints such
as speed limits and traffic signals. Traffic light
and traffic collection agents are aware of and
influence nearby vehicles; are able to perceive
and adapt to changing conditions; and work
collaboratively to achieve certain objectives.
Finally, traffic tower agents autonomously
manage and control their traffic area, including
the vehicles and traffic devices they enclose.

In addition to these virtual agents, and for
software design purposes, it is necessary to
introduce two design related concepts: a cell
is a repository that encompasses all informa-

Figure 2. Virtual agent architecture

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 43

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

tion related to a traffic area. A cell controller
is a special purpose agent whose main role is
to consistently provide virtual agents located
within its cell with a correct perception of their
surroundings. This is a complex and critical role
in any realistic simulation. More information
on this topic can be found in (Mili & Steiner,
2007). It is important to note that a cell controller
does not correspond to a real world concept.

3.2.1. High Level Architecture

As shown in Figure 3, MATISSE’s high level
architecture includes three main components:
the Agent-Environment System (AES) creates
simulation instances; the Data Management
System (DMS) stores and processes information
collected from the AES; and the Visualization
Framework receives information from the DMS
and creates 2D or 3D images of the simulation.

3.2.2. MATISSE’s Virtual Agent
Platforms

The four types of agents identified by MATISSE
are naturally managed by four distinct agent
platforms within the Agent-Environment Sys-
tem component. The Virtual Vehicle Platform
manages mobile agents that represent vehicles.
Vehicle-agents are created by the Vehicle-Agent
Management Component, and vehicle-agents
communicate with each other through the
Vehicle-Vehicle Message Transport Service.
The Virtual Traffic Device Platform manages
stationary agents that represent traffic lights,
relays and information collection devices. The
Traffic-Device-Agent Management Component
creates and manages traffic-device-agents
within the simulation while Device-Device Mes-
sage Transport Service handles communication
between these stationary traffic-agents. The

Figure 3. Matisse high level architecture

44 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Virtual Tower Platform creates and manages
the hierarchical infrastructure of traffic-tower-
agents. Finally the Simulated Environment
Platform creates and manages cell controllers.
The Environment Agent Management Compo-
nent creates cell controllers, assigns them to a
cell, and maintains the cell controller hierarchy
for the simulation.

4. SPECIFYING
MATISSE IN ALLOY

Due to the scale and complexity of the simula-
tion architecture, from a software engineering
perspective, we found it necessary to formally
specify and validate various simulation prop-
erties before starting the implementation of
MATISSE. In this section we briefly introduce
the Alloy language (Jackson, 2002) and present
a specification of the simulation properties of
MATISSE in Alloy.

4.1. Overview of Alloy

In the past two decades, several formalisms
have been proposed for multi-agent systems
(e.g., temporal logic, multi-modal logic).
These formalisms are generally abstract and
not related to concrete computational models
(D’Inverno et al., 1997). Other approaches have
used traditional formal languages such as Z and
CSP (Brazier, Dunin-Keplicz, Jennings, Treur,
& Lesser, 1995; Luck & D’Inverno, 2001).
While providing an accessible notation, these
formalisms lack the diagrammatic representa-
tion and tool support necessary to effectively
analyze models.

Alloy is a specification language based
on set theory and first-order relational logic
(Jackson, 2002). The language has a simple
and concise syntax that can represent complex
structural properties and behavior. It comes with
an Analyzer, a powerful, integrated tool for
compiling and analyzing models. The Analyzer
supports two types of automatic analysis: 1)
the search for an instance that satisfies all the
constraints and relations specified in a model;
2) the identification of a counterexample that

violates the assertions specified in a model.
Both analysis are performed within a user de-
fined scope that bounds the cardinality of entity
sets in instances of the model. Outputs can be
graphically depicted using the visualizer and
evaluated using the command-line evaluator.

Alloy has been used in both industry and
academia (Coppit & Sullivan, 2000; Dolby et
al., 2007; Jackson & Vaziri, 2000). Jackson and
Vaziri (2000) have proposed an approach to
verify Java methods in Alloy. At IBM, a subset
of Alloy has been used to develop a technique
for efficient checking of data structure invari-
ants (Dolby et al., 2007). Alloy was also used
in (Coppit, Yang, Khurshid, Le, & Sullivan,
2005) to test and find bugs in Galileo, a dynamic
fault tree analysis tool used at NASA (Coppit
& Sullivan, 2000).

4.2. MATISSE Metamodel

For the purpose of specifying MATISSE in
Alloy, we introduce a set of related concepts
based on the discussion presented in Section
3. Figure 4 depicts the traffic domain concepts
of the simulation. It describes the different
types of virtual agents, their environment and
organizational relationships. In this model, the
Virtual Environment consists of Traffic Areas
and represents the environment where Virtual
Agents are situated in. A Tower provides guid-
ance to virtual agents within its managed traffic
area while being able to collaborate with other
towers.

Figure 5 depicts Cells and Cell Controllers
as previously discussed in Section 3. In addition,
it defines Communication Medium as an abstrac-
tion of the communication mechanisms for
vehicle to vehicle and vehicle to traffic infra-
structure interactions. The relation vicinity
represents a virtual agent’s range of communi-
cation.

4.3. Specification of MATISSE
Static Properties

The static properties of a model describe enti-
ties and their relationships. In Alloy, these are
specified through the signature declaration.

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 45

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 4. Traffic metamodel

Figure 5. Simulation metamodel

46 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

For example, in the following specifica-
tion excerpt, module TrafficSimulation Entity
specifies vehicle-agents, traffic-light-agents,
and tower-agents. It also specifies VirtualEn-
vironment, TrafficArea, Cell, CellController,
and CommunicationMedium. The one keyword
constraints the model to one virtual environ-
ment. Simulation events (both external and
internal) are specified by Event and emergency
alerts are specified by Alert.

1 module TrafficSimulationEntity
2 abstract sig VirtualAgent{}
3 sig Vehicle extends VirtualAgent{}
4 sig TrafficLight extends VirtualAgent{}
5 sig Tower extends VirtualAgent{}
6 one sig VirtualEnvironment{}
7 sig TrafficArea{}
8 sig Cell{}
9 sig CellController{}
10 sig CommunicationMedium{}
11 sig Event{}
12 sig Alert extends Event{}

The following specification fragment
shows a partial specification of MATISSE’s
model. module TrafficSimulation makes use
of the elements defined in module Traffic-
SimulationEntity to specify the relations and
constrains of the model. An example of a rela-
tion, in sig Simulation, is guide that corresponds
to the relationship between tower-agents and
virtual-agents (e.g., vehicle-agents, traffic-light-
agents). The aggregation of module Traffic-
SimulationEntity and TrafficSimulation makes
up the complete MATISSE simulation model.

1 module TrafficSimulation
2 open TrafficSimulationEntity
3 sig Simulation{
4 dividedIntoArea: VirtualEnvironment one
5 → TrafficArea,
6 guide: Tower lone → VirtualAgent,
7 manage: Tower one → one TrafficArea,
8 contain: TrafficArea one → VirtualAgent,
9 towerCollaborate: Tower → Tower,

10 ccCollaborate: CellController → Cell-
Controller,

11 dividedIntoCell: VirtualEnvironment one
→ Cell,

12 ccManage: CellController one → one Cell,
13 cellContain: Cell lone → VirtualAgent,
14 influence: VirtualAgent → Event → Cell-

Controller,
15 perception: CellController → VirtualAgent,
16 knows: VirtualAgent → Event,
17 vicinity: CommunicationMedium →

VirtualAgent
18 → VirtualAgent,
19 transmitted: VirtualAgent → Event
20 → CommunicationMedium,
21 relayed: CommunicationMedium → Event

→VirtualAgent,
22 sent: VirtualAgent → Event → Tower,
23 notified: Tower → Event → VirtualAgent,
24 propagated: Tower → Event → Tower
25 }{
26 ...
27 contain - (TrafficArea \
28 → (VirtualAgent - Tower)) = ~manage
29 all va: (VirtualAgent - Tower) | one t: Tower |
30 t → va in guide
31 no t: Tower | t → t in guide
32 all t, t’: Tower |
33 not ((t → t’ in guide) and (t’→ t in guide))
34 towerCollaborate = ~towerCollaborate
35 ...
36 }

Alloy enables the precise specification
of static properties such as “each tower-agent
manages a virtual traffic area”. Using relation
multiplicities, manage: Tower one → one Traf-
ficArea specifies a one-to-one relation between
tower and traffic area elements. Further, the
constraint contain − (TrafficArea → (VirtualA-
gent − Tower)) = ~manage ensures that each
tower-agent is assigned to a unique traffic area,
and that each area is uniquely associated to its
tower-agent.

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 47

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4.4. Specification of MATISSE
Dynamic Properties

In Alloy, operations are specified through
predicates, which relate valid instances of
Simulation through a change in its composi-
tion. For instance, pred sendMessage makes
use of the function fun getTransmittedMessage
to add the relation between a virtual agent and
the communication medium to s in order to
produce s’, in which s and s’ denote the before
and after states of Simulation.

1 pred sendMessage[va: VirtualAgent, s, s’:
Simulation]{

2 s’.transmitted = s.transmitted
3 + getTransmittedMessage[va, s]
4 }
5
6 fun getTransmittedMessage[va: VirtualA-

gent,
7 s:Simulation]: VirtualAgent → Event
8 → CommunicationMedium {
9 (s.knows → CommunicationMedium)
10 - ((VirtualAgent - va) → Event → Com-

municationMedium)
11 }

Thus far, the presented specification
produces arbitrary, unrelated instances of the
MATISSE simulation model. In order to model
the system behavior, it is necessary to define
relations between instances and make use of
execution traces. To produce execution traces,
we specify a linear ordering over Simulation
elements (see Figure 6).

This is achieved by importing the library
module util/ordering. This module includes

functions first, next, and last. As depicted by
Figure 6 (b), first returns the first element S1,
s1.next returns S2 and s2.next returns S3, and
last returns the last element S3.

The following fragments of MATISSE’s
specification illustrate the new constraints added
to the model to enable execution traces. The pred
init defines the initial conditions (i.e., the initial
composition) and pred inv defines invariants
(i.e., properties that never change during an
execution trace) of Simulation. Any adjacent
Simulation in the ordering is related by fact
traces. For instance, the following trace frag-
ment specifies short-range vehicle-to-vehicle
and vehicle-to-infrastructure interactions. If
a vehicle has transmitted a message in s, then
the message is relayed to its recipients in s’
through operation relayMessage (lines 18 to
23). Similarly, if a message has been relayed
in s, then the message is stored in each recipi-
ent’s knowledge base in s’ through operation
receiveMessage (lines 25 to 30).

1 module TrafficSimulation
2 open util/ordering[Simulation] as t
3
4 pred init[s:Simulation]{ ... }
5 pred inv[s, s’:Simulation]{
6 s’.dividedIntoArea = s.dividedIntoArea
7 s’.guide = s.guide
8 ...
9 }
10 fact traces {
11 init[first]
12
13 all s:Simulation - last | let s’ = s.next {
14 inv[s,s’]
15 …

Figure 6. (a) Unrelated instances of the model and (b) Execution trace of the model

48 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 // vehicle-to-vehicle interactions
17 // and vehicle-to-traffic-devices interac-

tions
18 let va=((s.transmitted).Communication-

Medium).Event | {
19 (va.(getVicinity[va, s])
20 not in Event.(CommunicationMedium.

(s.relayed)))
21 => relayMessage[va, s, s’]
22 else s’.relayed = s.relayed
23 }
24
25 let va = (Event.(CommunicationMedium.

(s.relayed))
26 + Event.(Tower.(s.notified))
27 - (s.knows).Event) | {
28 (va != none)
29 => receiveMessage[va, s, s’]
30 }
31
32 // Information Passing within an area
33 …
34
35 // Event Propagation across traffic areas
36 ...
37 }
38 }

The next specification excerpt describes
how information is passed within a traffic area.
For example, upon facing an unpredicted event
in s, a vehicle sends an alert to its traffic tower
in s’ through operation sendEvent (lines 2 to 11).
This operation modifies the state of Simulation
by adding a new element to relation sent. In a
subsequent step s, this information is used in
s’ to pass the event information to all virtual
agents located within the tower’s traffic area
through operation notifyEvent (lines 13 to 18).

1 // Information Passing within an area
2 let va = (s.knows.Event - Tower)
3 - Event.(Tower.(s.notified)) | {
4 (va not in ((s.sent).Tower).Event) =>
5 (sendEvent[va, s, s’]

6 and (towers[va,s’].va).(s’.notified)
7 = (towers[va,s].va).(s.notified)
8 and (s’.knows - Tower → Event)
9 = (s.knows - Tower → Event))
10 else (s’.sent = s.sent)
11 }
12
13 let t = (Event.(VirtualAgent.(s.sent))) | {
14 (t not in ((s.notified).VirtualAgent).Event)

=>
15 (notifyEvent[t, s, s’] and (s’.knows - t →

Event)
16 = (s.knows - t → Event))
17 else t.(s’.notified) = t.(s.notified)
18 }

For the purpose of propagating information
across traffic areas, MATISSE defines interac-
tions between traffic towers. As specified in the
following excerpt, if a traffic tower is aware
of an event in s, then the event is propagated
in s’ to its adjacent towers through operation
propagateEvent. This operation modifies the
state of Simulation by adding new elements
to relation propagated. In a subsequent step s,
each tower uses this information in s’ to pass
the event to its virtual agents through operation
notifyEvent.

1 // Event Propagation across traffic areas
2 let t = s.knows.Event - (VirtualAgent - Tower)

| {
3 (t not in ((s.propagated).Tower).Event) =>
4 (propagateEvent[t, s, s’])
5 and (t.(s’.towerCollaborate)).(s’.notified)
6 = (t.(s.towerCollaborate)).(s.notified)
7 else (s’.propagated = s.propagated)
8 }
9
10 let t = Event.(Tower.(s.propagated)) | {
11 (t not in ((s.notified).VirtualAgent).Event)

=>
12 notifyEvent[t, s, s’]
13 else t.(s’.notified) = t.(s.notified)
14 }

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 49

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

This complete specification allows the
analysis of the static and dynamic properties of
MATISSE. In addition, a number of ITS traffic
scenarios involving collaboration, information
dissemination, and event propagation can be
planned and designed to validate MATISSE’s
traffic model.

5. ANALYZING MATISSE’S
PROPERTIES

In this section, we discuss how the above men-
tioned Alloy models are verified and validated.
In the remainder of this paper, the term verifi-
cation is used to refer to consistency checking
between Alloy specification and MATISSE’s
design. On the other hand, the term validation is
used to refer to conformance checking between
Alloy specification and MATISSE’s high level
requirements.

5.1. MATISSE’s Properties
Verification

In this section, we discuss how static and
dynamic properties of MATISSE are verified.
In addition to providing model type checking
features, the Alloy Analyzer allows us to define
assertions, verify their correctness, and identify
constraint violations if they exist.

The assertion VehicleSendEventOnly-
ToTowerGuidingIt states that for all instances
of the Simulation a vehicle or traffic light can
send an event (through operation sendEvent)
only to the tower guiding it. No counterexample
is found for this static property following the
constraining facts specified in Simulation.

1 assert VehicleSendEventOnlyToTower-
GuidingIt {

2 all s: Simulation | {
3 let va = ((s.sent).Tower).Event |
4 (va != none) => Event.(va.(s.sent)) =

(s.guide).va
5 }
6 }

The assertion MessageIsRelayed is an
example of verification of a dynamic property
of the model, in which we ensure consistency
between adjacent instances of Simulation. It
states that if a vehicle has transmitted a message
in s, then the message must be relayed to the
vehicle’s vicinity in s’. No counterexample is
found for this property.

1 assert MessageIsRelayed {
2 all s: Simulation, s’: s.next | {
3 let va = ((s.transmitted).Communication-

Medium).Event |
4 let e = (va.(s.transmitted)).Communica-

tionMedium |
5 let vicinity = getVicinity[va, s] |
6 (va != none) => va.vicinity
7 in e.(CommunicationMedium.(s’.relayed))
8 }
9 }

The assertion receiveMessageIsDeter-
ministic ensures that pred receiveMessage is
determinitic (i.e., each simulation s is associated
with at most one simulation s’). It states that if
a vehicle has received a message in both s’ and
s” after the message was relayed in s, then its
knowledge base in s’ must be the same as in s”
(i.e., s’.knows = s”.knows). No counterexample
is found for this property.

1 assert receiveMessageIsDeterministic{
2 all s, s’,s’’: Simulation, va: VirtualAgent |
3 r e c e i v e M e s s a g e [v a , s , s ’] a n d

receiveMessage[va,s,s’’]
4 => (s’.knows = s’’.knows)
5 }

The assertion initImpliesInv checks that
the invariants of the model hold for all initial
instances. This assertion states that pred init on
any instance s implies the invariants between
instances s and s.next in the execution trace.
No counterexample is found for this property.

50 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

1 assert initImpliesInv{
2 all s:Simulation, s’: s.next | init [s] =>

inv[s,s’]
3 }

Finally, the assertion sendMessagePre-
servesInv states that operation pred sendMes-
sage preserves the invariants between ordered
instances specified in the model. No counter-
example is found for this property.

1 assert sendMessagePreservesInv{
2 all s:Simulation, s’: s.next, va: VirtualAgent |
3 sendMessage[va,s,s’] => inv[s,s’]
4 }

5.2. Traffic Scenarios Validation

The following ITS scenarios are used to validate
the simulation properties of MATISSE. For
each case, we present a textual description of
the scenario followed by an analysis of the
execution traces generated from the Alloy
specification. These execution traces validate
simulation properties such as virtual agent
perception, agent-to-agent interaction, and
event propagation.

5.2.1. Scenario 1: Safety
Enhancement and Congestion
Reduction on a one-way road

The scenario depicted in Figure 7 demon-
strates the suitability of MATISSE for safety
improvement and congestion reduction. This
ITS scenario consists of vehicles driving on a
one-way road. An event (e.g., an accident, an
obstruction on the road, or any other abnormal
condition) has occurred in Traffic Area A0, and
vehicle V0 perceives the event within its field
of vision shown as a cone. Under this scenario,
V0 takes the following steps: 1) it informs all
vehicles located in its close vicinity about the
perceived event through vehicle-to-vehicle
interactions. The notified vehicles are able to
take the necessary actions to avoid a major ac-
cident. 2) It informs traffic tower T0 about the
perceived event via vehicle-to-infrastructure
interactions.

After deliberation and based on the event
characteristics, T0 alerts the vehicles located
in A0 (i.e., V1 to V4) about the event. T0 also
determines the potential impact of this event
on neighboring traffic areas and informs the
adjacent traffic tower T1 of the event. T1 de-

Figure 7. Scenario for safety enhancement and congestion reduction

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 51

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

liberates, and informs all vehicles located
within Traffic Area A1 of the event and guides
them in their choice of the best alternate route
to follow (to avoid congestion). All vehicles in
the traffic area make use of the broader traffic
information to improve the overall safety con-
dition and avoid traffic congestion.

The execution of the Alloy model for this
scenario produces the execution trace consisting
of the following sets of elements:

this/Simulation = {Simulation0, Simulation1,
Simulation2,
 Simulation3, Simulation4, Simulation5}
t/VirtualAgent = {t/Tower0, t/Tower1, t/Ve-
hicle0,
 t/Vehicle1, t/Vehicle2, t/Vehicle3,
 t/Vehicle4, t/Vehicle5, t/Vehicle6,
 t/Vehicle7, t/Vehicle8}
t/TrafficArea = {t/TrafficArea0, t/TrafficArea1}
t/CommunicationMedium = {t/Communica-
tionMedium0}
t/Event = {t/Event0}

These sets (e.g., t/VirtualAgent, t/Traf-
ficArea) correspond to the signatures defined
in the specification (e.g., sig VirtualAgent, sig

TrafficArea) and the elements (e.g., t/Tower0,
t/TrafficArea0) are arbitrarily assigned to the
sets at execution time. For the purpose of this
section, sets such as VirtualEnvironment,
CellController, and Cell are omitted from the
discussion.

Figure 8 shows the visual representation
of the last instance of the execution trace (i.e.,
Simulation5). Each element is depicted as a
geometric figure, and each relation (e.g., knows,
guide) as an arrow. The visual representations
of the intermediate instances of the trace
(i.e., Simulation0, Simulation1, Simulation2,
Simulation3, and Simulation4) are omitted. The
following steps describe in detail the complete
execution trace.

In Simulation0, Vehicle0 perceives an Event
through its sensors. It stores this information
into its knowledge base as reflected by relation
knows. In Simulation1, Vehicle0 broadcasts the
event to the CommunicationMedium, and com-
municates the event information to its virtual
traffic tower. This is reflected by relation
transmitted[Event] between Vehicle0 and Com-
municationMedium, and relation sent[Event]
between Vehicle0 and Tower0.

Figure 8. Last instance of the execution trace for Scenario 1

52 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In Simulation2, Tower0 stores the event
information into its knowledge base as reflected
by relation knows between Tower0 and Event.
The CommunicationMedium proceeds by
relaying the event to Vehicle0’s vicinity (i.e.,
Vehicle1, Vehicle2). This is represented by
relations vicinity[Vehicle0] and relayed[Event]
between Communication Medium and vehicles
Vehicle1 and Vehicle2. Also, Tower0 commu-
nicates Event to all vehicles in its traffic area
as depicted by relations notified[Event].

In Simulation3, vehicles vehicle1 and
vehicle2 store the relayed event (received via
CommunicationMedium) into their knowledge
bases. In addition, all vehicles within Tower0’s
traffic area store the event notification (received
via Tower0) into their knowledge bases. This is
reflected by relations knows between Vehicle0,
Vehicle1, Vehicle2, Vehicle3, Vehicle4, Vehicle5
and Event. Also, Tower0 uses its acquaintance
model represented by relation towerCollaborate
to identify the neighboring tower that might
be affected by the event (in this case, Tower1)
and passes Event on to it. This is reflected by

relation propagated[Event] between Tower0
and Tower1.

In Simulation4, Tower1 stores Event into
its knowledge base as reflected by relation
knows between Tower1 and Event. Also, Tower1
communicates Event to its local vehicles as
represented by relation notified[Event]. Finally,
in Simulation5, all vehicles within Tower1’s
traffic area store the event information received
into their knowledge bases. This is reflected by
the relations knows between Vehicle5, Vehicle6,
Vehicle7, Vehicle8, and Event.

5.2.2. Scenario 2: Intersection
Collision Avoidance

The scenario depicted in Figure 9 demonstrates
the suitability of MATISSE for the simulation
of short-range communication between ve-
hicles (Xu, Mak, Ko, & Sengupta, 2004) where
upstream communication with towers is not
necessary. In this scenario, vehicle V1 wants
to make a left turn while there is an obstruction
blocking its vision from oncoming vehicles on

Figure 9. Scenario for intersection collision avoidance

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 53

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the right of the intersection. Using vehicle-to-
vehicle communication, vehicle V1 is alerted
about vehicle V0’s presence, thus allowing
vehicle V1 to take necessary actions to avoid
a potential accident.

The execution of the Alloy model for this
scenario produces the execution trace consist-
ing of the following sets of elements:

this/Simulation={Simulation0, Simulation1,
Simulation2,
 Simulation3}
t/VirtualAgent={t/Tower0, t/Vehicle0, t/Ve-
hicle1}
t/TrafficArea={t/TrafficArea0}
t/CommunicationMedium={t/Communica-
tionMedium0}
t/Alert={t/Alert0}

Figure 10 shows a visual representation of
the complete execution trace. In Simulation0,
Vehicle0 contains Vehicle1 in its vicinity as
reflected by relation vicinity[Vehicle0]. In Simu-
lation1, Vehicle0 broadcasts an alert (using a
standard dedicated short-range communication
mechanism) warning the surrounding vehicles
of its presence near the road intersection. This
is reflected by relation transmitted[Alert] be-
tween Vehicle0 and CommunicationMedium. In
Simulation2, the CommunicationMedium uses
Vehicle0’s vicinity to relay the alert to Vehicle1,
as depicted by relation relayed[Alert]. Finally,
in Simulation3, although Vehicle0 is out of
Vehicle1’s field of vision, Vehicle1 becomes
aware that Vehicle0 is approaching the intersec-
tion, as reflected by relation knows between
Vehicle1 and Alert.

6. EVALUATION OF THE
APPROACH

In this section, we discuss our evaluation of
the approach used to specify and analyze MA-
TISSE’s properties.

Abstraction. By abstracting from imple-
mentation details, Alloy helped us focus on
the most important aspects of system design

and explore design alternatives. For instance,
it allowed us to revisit various responsibilities
assigned to agents when modeling agent-to-
agent interactions.

Process. We have started the design activity
with a small model containing just a few signa-
tures and constraints, and progressed by adding
detail iteratively. At each step, key aspects of the
system were modeled, checked, and simulated
without writing a single line of code.

Model Execution. The execution of traces
is a valuable tool that allowed us to identify
several conceptual inconsistencies of the model
such as a traffic tower incorrectly passing an
event information to a vehicle outside its traffic
area. The step-by-step scenario execution en-
abled us to analyze the various states in which
the traffic model can be and validates its high
level properties.

Analysis. To make analysis feasible, it is
necessary to define a scope that restricts the
number of elements of each signature. This
restriction comes at a cost: counterexamples
might go undetected if they are outside of the
scope. Nevertheless, as mentioned by Jackson
(2011), it is likely that invalid assertions have
counterexamples within small scopes. For the
purposes of verifying MATISSE’s properties,
we found that the analysis provided by Alloy
was sufficient to produce meaningful results.
For instance, the verification of the assertions
VehicleSendEventOnlyToTowerGuidingIt
(A1), MessageIsRelayed (A2) and receiveMes-
sageIsDeterministic (A3) produce the logical
clauses shown in Table 1 and the total analysis
time depicted in Figure 11. As stated earlier no
counterexamples were found for these asser-
tions. Despite the exponential growth of the
search space and time, our experimental results
show that even small scopes produce large
search spaces. This is sufficient to increase our
confidence in the correctness of the model. To
illustrate this, we introduced inconsistencies
in the model and identified counterexamples
within scopes of six elements per signature.

Separation of Concerns. The notion of
scope is decoupled from the model, allowing
us to analyze different scenarios without

54 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 10. Complete execution trace for scenario 2

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 55

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

modifying the model itself. For example, the
following excerpt shows the run commands
used to produce the execution traces for each
of the scenarios discussed in Section 5. In
Scenario 1 (line 2) we instructed the Analyzer
to produce an execution trace with 2 Towers
and 9 Vehicles in 6 Simulation steps, while in
Scenario 2 (line 5) we instructed the Analyzer
to produce an execution trace with 1 Tower and
2 Vehicles in 4 Simulation steps. This separation
resulted in more robust models enabling us to
specify MATISSE’s properties independently
of analysis concerns.

1 // Scenario 1
2 run Show for 2 Tower, 9 Vehicle but 6

Simulation
3
4 // Scenario 2
5 run Show for 1 Tower, 2 Vehicle but 4

Simulation

Formalism. Despite its apparent simplic-
ity, a strong foundation in set theory and logic
is essential to specify complex interactions
involving communication and cooperation
among agents in Alloy.

Table 1. Number of logical clauses generated for assertions checked on the MATISSE model

Scope A1 A2 A3

6 491,653 484,616 494,540

8 1,074,997 1,057,730 1,079,548

10 2,011,318 1,976,925 2,017,573

12 3,370,218 3,310,027 3,378,025

14 5,239,118 5,142,681 5,248,133

16 7,620,086 7,475,179 7,629,773

18 10,774,265 10,566,888 10,783,896

20 14,521,253 14,235,630 14,529,908

Figure 11. Scope vs. analysis time for assertions checked on the MATISSE model

56 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Real-time Properties. We experienced
difficulty coping with the timing aspects of
the simulation. For instance, there is no built
in mechanism in Alloy to specify and verify
real-time properties. Hence, it is not possible
to verify that a given communication occurs
in due time among agents. Although Alloy
includes some basic temporal constraints, it is
less expressive than traditional temporal logics
for specifying complex temporal properties
such as instantaneous transitions and interval
properties of system states. For these proper-
ties, approaches such as duration calculus,
timed petri-nets, and timed process algebras
proved to be more suitable (Bihler & Vogler,
2004; Cacciagrano & Corradini, 2004; Zhou
& Hansen, 2004).

Based on these observations, we believe
that in order to specify complex real-time
systems, it is necessary to complement our
modeling approach with a notation such as
Statecharts (Harel, 1987). This follows the
traditional belief that functional and temporal
behaviors are orthogonal concerns that can be
naturally modeled using different notations
(Broy, 2007; Cacciagrano & Corradini, 2004).

Statecharts is a visual diagrammatic nota-
tion with a formal semantic foundation that
has been extended to tackle hard real-time
systems (Burmester & Giese, 2005; Giese &
Burmester, 2003). It provides mechanisms to
model state hierarchy and concurrency, and
thus allows for the definition of compact and
expressive models.

7. RELATED WORK

7.1. Multi-Agent Systems
Formalisms

As stated in Section 4, several formalisms have
emerged for the specification of multi-agent
systems. In general, each of them provides a
different emphasis and no single formalism
seems to be suitable to model all aspects of
the problem (e.g., functional, reactive, inten-
tional). As identified in (D’Inverno et al., 1997),
these formalisms can be grouped under three

categories: temporal logic, modal logic, and
well-known formal specification languages
from traditional software engineering.

Temporal logic has been used to reason
about liveness and safety properties of agent
systems (Wooldridge, 2009). For instance,
branching time temporal logic such as CTL
and its extensions have been used to specify
and verify dynamic properties of multi-agent
systems (Fisher & Wooldridge, 1997; Lomuscio,
Qu, & Raimondi, 2009; Wooldridge & Jennings,
1999). However, their inherent complexity
hinders their wide adoption as a tool for the
specification of large-scale multi-agent systems
(Wooldridge, Jennings, & Kinny, 2000).

Another approach uses modal logic to
specify cognitive properties (beliefs, goals,
tasks) of agents. In Wooldridge and Jennings
(1999), a framework based on a quantified multi-
modal logic has been proposed to characterize
the agent’s mental states (e.g., states triggering
agents to engage in cooperative actions). These
formalisms are generally abstract and not related
to concrete computational models, making their
application for mainstream multi-agent system
development difficult (D’Inverno et al., 1997).

In contrast, well-known formal specifi-
cation approaches are more accessible and
appropriate for describing software systems at
different levels of abstraction. For example, Z
has been used to define the basis of a framework
for specifying functional properties of multi-
agent systems (D’Inverno & Luck, 1998; Luck
& D’Inverno, 2001). However, these approaches
do not naturally lend themselves to executable
specifications and lack complete tool suites for
automated analysis. Alloy overcomes these
limitations by providing model type checking
and animation directly built-in in the Analyzer.

7.2. Verification of
Multi-Agent Systems

Besides specifying the static and dynamic
properties of a complex system, it is important
to consider the problem of verifying such
specifications. Model checking (Clarke, 1997)
has been widely used for the verification of
MAS systems (Benerecetti & Cimatti, 2002;

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 57

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Bordini, Fisher, Visser, & Wooldridge, 2006;
Rao & Georgeff, 1993; Van Der Hoek &
Wooldridge, 2002). Given a finite state model
M of a system and a property P expressed via
a logical formula ϕ

P
 to be checked, the

model checking problem is to verify whether
or not M

P
 ϕ .

Although inspired by model checking,
analysis in Alloy relies on recent advances in
SAT (Boolean satisfiability) techniques. The
Analyzer translates Alloy specifications into
Boolean constraints which are given as input
to SAT solvers. As opposed to model checkers,
the Analyzer does not exhaustively search the
entire state space. Also, since only traces of
bounded length are considered, the Analyzer
finds counterexamples faster than a model
checker due to the depth-first nature of the SAT
solver (Jackson, 2011).

8. CONCLUSION

MATISSE is a multi-agent based simulation
platform designed to specify and execute traf-
fic simulations for a new generation of ITS.
MATISSE’s unique features include its open,
decentralized and distributed environment; the
ability of agents to perceive their surroundings
in simulated real time; and the ability to execute
micro- and macro-level ITS scenarios within
the same framework.

In this paper we discussed how Alloy, a
modeling language based on set theory and first
order logic, was used to specify and analyze the
static and dynamic properties of MATISSE.
Future work includes determining how to
integrate Alloy models with Statecharts and
evaluating the scalability of Alloy specifications
for complex interaction patterns.

ACKNOWLEDGMENTS

This project is partially supported by Rockwell
Collins under the grant number 5-25143.

REFERENCES

Babin, A., Florian, M., James-Lefebvre, L., & Spiess,
H. (1982). Emme/2: Interactive graphic method for
road and transit planning. Transportation Research
Record, 866.

Balmer, M., Rieser, M., Meister, K., Charypar, D.,
Lefebvre, N., & Nagel, K. (2009). Matsim-t: Archi-
tecture and simulation times. Multi-agent Systems
for Traffic and Transportation Engineering, 57–78.

Benerecetti, M., & Cimatti, A. (2002). Symbolic
model checking for multi-agent systems. Proceed-
ings of the MoChart, 2, 1–8.

Bihler, E., Vogler, W., & Bernardo, M. (2004). Timed
petri nets: Efficiency of asynchronous systems. In
B. Marco, F. Corradini (Eds.), Formal Methods for
the Design of Real-Time Systems (LNCS 3185, pp.
105-106). Berlin/Heidelberg, Germany: Springer
Berlin / Heidelberg.

Bordini, R., Fisher, M., Visser, W., & Wooldridge,
M. (2006). Verifying multi-agent programs by model
checking. Autonomous Agents and Multi-Agent
Systems, 12(2), 239–256. doi:10.1007/s10458-
006-5955-7

Boyraz, P., Daescu, O., Fumagalli, A., Hansen, J.,
Trumper, K., & Wenkstern, R. (2009a). Soteria:
An integrated macro-micro transportation super-
infrastructure system for management and safety
(Tech. Rep.). Dallas, TX: University of Texas at
Dallas, Erik Jonsson School of Engineering and
Computer Science.

Boyraz, P., Yang, X., Sathyanarayana, A., & Hansen,
J. (2009b). Computer vision systems for “context-
aware” active vehicle safety and driver assistance.
In Proceedings of the 21st International Technical
Conference on the Enhanced Safety of Vehicles.
Stuttgart, Germany: National Highway Traffic Safety
Administration.

Brazier, F., Dunin-Keplicz, B., Jennings, N., Treur, J.,
& Lesser, V. (1995). Formal specification of multi-
agent systems: A real world case. In Proceedings of
the First International Conference on Multi-Agent
Systems (ICMAS). Cambridge, MA: MIT Press.

Broy, M. (2007). From “formal methods” to system
modeling. In C. B. Jones, Z. Liu, & J. Woodcock
(Eds.), Formal methods and hybrid real-time sys-
tems (LNCS 4700, pp. 24-44). Berlin/Heidelberg,
Germany: Springer Berlin / Heidelberg.

58 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Burmester, S., Giese, H., & Schäfer, W. (2005).
Model-driven architecture for hard real-time systems:
From platform independent models to code. In A.
Hartman, & D. Kreische (Eds.), Model driven archi-
tecture foundations and applications (LNCS 3748,
pp. 25-40). Berlin/Heidelberg, Germany: Springer
Berlin / Heidelberg.

Cacciagrano, D., & Corradini, F. (2004). Expres-
siveness of timed events and timed languages. In
M. Bernardo & F. Corradini (Eds.), Formal methods
for the design of real-time systems, (LNCS 3185,
pp. 51-53). Berlin/Heidelberg, Germany: Springer
Berlin / Heidelberg.

Cetin, N., Nagel, K., Raney, B., & Voellmy, A. (2002).
Large-scale multi-agent transportation simulations.
Computer Physics Communications, 147(1-2),
559–564. doi:10.1016/S0010-4655(02)00353-3

Clarke, E. (1997). Model checking. In S. Ramesh
& G. Sivakumar (Eds.), Foundations of Software
Technology and Theoretical Computer Science (Vol.
1346, pp. 54–56). Berlin/Heidelberg, Germany:
Springer Berlin / Heidelberg.

Coppit, D., & Sullivan, K. J. (2000). Galileo: A tool
built from mass-market applications. In Proceedings
of the 22nd International Conference on Software
Engineering. New York, NY: ACM.

Coppit, D., Yang, J., Khurshid, S., Le, W., & Sullivan,
K. (2005). Software assurance by bounded exhaustive
testing. IEEE Transactions on Software Engineering,
31(4), 328–339. doi:10.1109/TSE.2005.52

D’Inverno, M., Fisher, M., Lomuscio, A., Luck, M.,
De Rijke, M., Ryan, M., & Wooldridge, M. (1997).
Formalisms for multi-agent systems. The Knowledge
Engineering Review, 12(3), 315–321. doi:10.1017/
S0269888997003068

D’Inverno, M., & Luck, M. (1998). Engineering
AgentSpeak (L): A formal computational model.
Journal of Logic and Computation, 8(3), 233–260.
doi:10.1093/logcom/8.3.233

Dolby, J., Vaziri, M., & Tip, F. (2007). Finding bugs
efficiently with a SAT solver. In Proceedings of the
6th Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (pp.
195–204). New York, NY: ACM.

Dresner, K., & Stone, P. (2008). A multiagent ap-
proach to autonomous intersection management.
Journal of Artificial Intelligence Research, 31(1),
591–656.

Fisher, M., & Wooldridge, M. (1997). On the for-
mal specification and verification of multi-agent
systems. International Journal of Cooperative
Information Systems, 6(1), 37–66. doi:10.1142/
S0218843097000057

Galland, S., Gaud, N., Demange, J., & Koukam, A.
(2009). Environment model for multiagent-based
simulation of 3d urban systems. In Proceedings of
the 7th European Workshop on Multi-Agent Systems,
Ayia Napa, Cyprus.

Giese, H., & Burmester, S. (2003). Real-time stat-
echart semantics (Tech. Rep. tr-ri-03-239). Pader-
born, Germany: University of Paderborn.

Harel, D. (1987). Statecharts: A visual formal-
ism for complex systems. Science of Computer
Programming, 8(3), 231–274. doi:10.1016/0167-
6423(87)90035-9

Helbing, D., & Tilch, B. (1998). Generalized force
model of traffic dynamics. Physical Review E:
Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics, 58(1), 133. doi:10.1103/
PhysRevE.58.133

Jackson, D. (2002). Alloy: A lightweight object
modelling notation. ACM Transactions on Software
Engineering and Methodology, 11(2), 256–290.
doi:10.1145/505145.505149

Jackson, D. (2011). Software abstractions: Logic,
language and analysis. Cambridge, MA: The MIT
Press.

Jackson, D., & Vaziri, M. (2000). Finding bugs with a
constraint solver. ACM SIGSOFT Software Engineer-
ing Notes, 25(5), 14–25. doi:10.1145/347636.383378

Lieu, H., Santiago, A., & Kanaan, A. (1992). Corflo:
An integrated traffic simulation system for corridors.
In Proceedings of the Engineering Foundation Con-
ference. Palm Coast, FL.

Lomuscio, A., Qu, H., & Raimondi, F. (2009).
MCMAS: A model checker for the verification of
multi-agent systems. In A. Bouajjani & O. Maler
(Eds.), Computer aided Verification (Vol. 5643, pp.
682-688). Berlin/Heidelberg, Germany: Springer
Berlin / Heidelberg.

Luck, M., & D’Inverno, M. (2001). A conceptual
framework for agent definition and development.
The Computer Journal, 44(1), 1–20. doi:10.1093/
comjnl/44.1.1

Meyer, M. (1997). A toolbox for alleviating traffic
congestion and enhancing mobility. Washington,
DC: Institute of Transportation Engineers.

International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012 59

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Mili, R. Z., & Steiner, R. (2008). Modeling agent-
environment interactions in adaptive MAS. In
D. Weyns, S. Brueckner, & Y. Demazeau (Eds.),
Engineering environment-mediated multi-agent
systems (Vol. 5049, pp. 135–147). Berlin/Heidelberg,
Germany: Springer Berlin / Heidelberg.

Mili, R. Z., Steiner, R., & Oladimeji, E. (2006).
DIVAs: Illustrating an abstract architecture for agent-
environment simulation systems. Multiagent and
Grid Systems, Special Issue on Agent-oriented Soft-
ware Development Methodologies, 2(4), 505–525.

Rao, A., & Georgeff, M. (1993). A model-theoretic
approach to the verification of situated reasoning
systems. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence (Vol. 1,
pp. 318–324).

Rossetti, R., & Liu, R. (2005). An agent-based
approach to assess drivers’ interaction with
pre-trip information systems. Journal of Intel-
ligent Transportation Systems, 9(1), 1–10.
doi:10.1080/15472450590912529

Russell, S., & Norvig, P. (1995). Artificial intel-
ligence: A modern approach. Englewood Cliffs,
NJ: Prentice Hall.

Sukthankar, R., Hancock, J., & Thorpe, C. (1998).
Tactical-level simulation for intelligent trans-
portation systems. Mathematical and Computer
Modelling, 27(9-11), 229–242. doi:10.1016/S0895-
7177(98)00062-4

Van Der Hoek, W., & Wooldridge, M. (2002). Model
checking knowledge and time. Model Checking
Software, 25–26.

Wenkstern, R. Z., Steel, T., Daescu, O., Hansen, J., &
Boyraz, P. (2009a). MATISSE: A large scale multi-
agent system for simulating traffic safety scenarios.
In Proceedings of IEEE 4th Biennial Workshop on
DSP for In-Vehicle Systems and Safety.

Wenkstern, R. Z., Steel, T., & Leask, G. (2009b). A
self-organizing architecture for traffic management.
In Proceedings of Workshop on Self-Organizing
Architectures, Working IEEE/IFIP Conference on
Software Architecture and European Conference on
Software Architecture.

Wooldridge, M. (2009). An introduction to multiagent
systems. Chichester, UK: Wiley.

Wooldridge, M., & Jennings, N. (1999). The coop-
erative problem-solving process. Journal of Logic
and Computation, 9(4), 563–592. doi:10.1093/log-
com/9.4.563

Wooldridge, M., Jennings, N., & Kinny, D. (2000).
The gaia methodology for agent-oriented analysis and
design. Autonomous Agents and Multi-Agent Systems,
3(3), 285–312. doi:10.1023/A:1010071910869

Xu, Q., Mak, T., Ko, J., & Sengupta, R. (2004).
Vehicle-to-vehicle safety messaging in DSRC. In
Proceedings of the 1st ACM International Workshop
on Vehicular Ad Hoc Networks (pp. 19–28). New
York, NY: ACM.

Zhou, C., & Hansen, M. (2004). Duration calculus:
A formal approach to real-time systems. Berlin,
Germany: Springer-Verlag.

Junia Valente is a PhD candidate at the School of Engineering and Computer Science at the
University of Texas at Dallas. She is a researcher at the UTD Multi-Agent & Visualization Systems
Lab where she is currently involved with several research projects in multi-agent based simulation
systems. Her research interests include self-adaptive and self-organizing systems, multi-agent
systems, and modeling and simulation of agent-based social and intelligent transportation sys-
tems. She holds a MS degree in Computer Science with Major in Software Engineering and a
BS degree in Software Engineering with Minor in Music from the University of Texas at Dallas.

Frederico Araujo is a PhD candidate in Software Engineering at the University of Texas at
Dallas. He holds a BS degree in Electrical Engineering from the University of São Paulo and a
MS degree from the École Centrale Paris, France. He also holds a MS degree in Computer Sci-
ence from the University of Texas at Dallas. His current research interests include self-adaptive
and self-organizing systems and agent-based simulation of intelligent transportation systems.
He is also interested in modern software paradigms and empirical software engineering. Past
academic research includes the study of the application of Artificial Neural Networks to support
safety analysis and fault location on distributed systems.

60 International Journal of Agent Technologies and Systems, 4(4), 38-60, October-December 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Rym Zalila-Wenkstern is an Associate Professor at the School of Engineering and Computer
Science, University of Texas at Dallas. She holds a PhD in Computer Science from the University
of Ottawa, Canada, and the Doctorat de Spécialité in Computer Science from the University of
Tunis, Tunisia. She is the director of the Multi Agent and Visualization Systems lab. Her research
projects have been sponsored by several organizations including the National Science Foundation,
Sandia National Laboratories, Rockwell Collins and the Department of Education. Dr. Zalila-
Wenkstern has served on several international conference organizing committees and numerous
program committees. She has worked as a consultant for U.S. and European organizations. She
is the CEO of ZW Corp, a startup specializing in the development of web-based multi-agent
systems and the director of the Executive Masters of Science in Software Engineering program
at UT Dallas. Dr. Zalila-Wenkstern is a member of ACM, IEEE and SWE professional societies.

