
Limiting the Impact of Stealthy Attacks on Industrial
Control Systems

David I. Urbina1, Jairo Giraldo1, Alvaro A. Cardenas1, Nils Ole Tippenhauer2,
Junia Valente1, Mustafa Faisal1, Justin Ruths1, Richard Candell3, and Henrik Sandberg4

1University of Texas at Dallas, 2Singapore University of Technology and Design,
3National Institute of Standards and Technology, and 4KTH Royal Institute of Technology

{david.urbina, jairo.giraldo, alvaro.cardenas, juniavalente, mustafa.faisal, jruths}@utdallas.edu,
nils_tippenhauer@sutd.edu.sg, richard.candell@nist.gov, and hsan@kth.se

ABSTRACT
While attacks on information systems have for most prac-
tical purposes binary outcomes (information was manipu-
lated/eavesdropped, or not), attacks manipulating the sen-
sor or control signals of Industrial Control Systems (ICS) can
be tuned by the attacker to cause a continuous spectrum in
damages. Attackers that want to remain undetected can at-
tempt to hide their manipulation of the system by following
closely the expected behavior of the system, while injecting
just enough false information at each time step to achieve
their goals.

In this work, we study if physics-based attack detection
can limit the impact of such stealthy attacks. We start with
a comprehensive review of related work on attack detection
schemes in the security and control systems community. We
then show that many of these works use detection schemes
that are not limiting the impact of stealthy attacks. We pro-
pose a new metric to measure the impact of stealthy attacks
and how they relate to our selection on an upper bound on
false alarms. We finally show that the impact of such attacks
can be mitigated in several cases by the proper combination
and configuration of detection schemes. We demonstrate
the effectiveness of our algorithms through simulations and
experiments using real ICS testbeds and real ICS systems.
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1. INTRODUCTION
One of the fundamentally unique and intrinsic proper-

ties of Industrial Control Systems (ICS)—when compared
to general Information Technology (IT) systems— is that
changes in the system’s state must follow immutable laws of
physics. For example, the physical properties of water sys-
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tems (fluid dynamics) or the power grid (electromagnetics)
can be used to create prediction models that we can then
use to confirm that the control commands sent to the field
were executed correctly and that the information coming
from sensors is consistent with the expected behavior of the
system: if we opened an intake valve, we would expect the
water tank level to rise, otherwise we may have a problem
with the control, actuator, or the sensor.

The idea of using physics-based models of the normal op-
eration of control systems to detect attacks has been used in
an increasing number of publications in security conferences
in the last couple of years. Applications include water con-
trol systems [21], state estimation in the power grid [35,36],
boilers in power plants [67], chemical process control [10],
electricity consumption data from smart meters [40], and a
variety of industrial control systems [42].

The growing number of publications shows the importance
of leveraging the physical properties of control systems for
security; however, a missing element in this growing body
of work is a unified adversary model and security metric to
help us compare the effectiveness of previous proposals. In
particular, the problem we consider is one where the attacker
knows the attack-detection system is in place and bypasses it
by launching attacks imitating our expected behavior of the
system, but different enough that over long periods of time
it can drive the system to an unsafe operating state. This
attacker is quite powerful and can provide an upper bound
on the worst performance of our attack-detection tools.

Contributions. (i) We propose a strong adversary model
that will always be able to bypass attack-detection mech-
anisms and propose a new evaluation metric for attack-
detection algorithms that quantifies the negative impact of
these stealthy attacks and the inherent trade-off with false
alarms. Our new metric helps us compare in a fair way
previously proposed attack-detection mechanisms.

(ii) We compare previous attack-detection proposals across
three different experimental settings: a) a testbed operating
real-world systems, b) network data we collected from an
operational large-scale Supervisory Control and Data Acqui-
sition (SCADA) system that manages more than 100 Pro-
grammable Logic Controllers (PLCs), and c) simulations.

(iii) Using these three scenarios we find the following re-
sults: (a) while the vast majority of previous work uses state-
less tests on residuals, stateful tests are better in limiting
the impact of stealthy attackers (for the same levels of false
alarms), (b) limiting the impact of a stealthy attacker can
also depend on the specific control algorithm used and not
only on the attack-detection algorithm, (c) linear state-space



models outperform output-only autoregressive models, (d)
time and space correlated models outperform models that
do not exploit these correlations, and (e) from the point of
view of an attacker, launching undetected actuator attacks is
more difficult than launching undetected false-data injection
for sensor values.

The remainder of this paper is organized as follows: In
§ 2, we provide the scope of the paper, and provide the
background to analyze previous proposals. We introduce
our attacker model and the need for new metrics in § 3. We
introduce a way to evaluate the impact of undetected attacks
and attack-detection systems in § 4, and then we use this
adversary model and metric to evaluate the performance of
these systems in physical testbeds, real-world systems, and
simulations in § 5.

2. BACKGROUND AND TAXONOMY
Scope of Our Study. We focus on using real-time mea-
surements of the physical world to build indicators of at-
tacks. In particular, we look at the physics of the process un-
der control but our approach can be extended to the physics
of devices as well [18]. Our work is motivated by false sensor
measurements [35, 58] or false control signals like manipu-
lating vehicle platoons [19], manipulating demand-response
systems [58], and the sabotage Stuxnet created by manip-
ulating the rotation frequency of centrifuges [17, 32]. The
question we are trying to address is how to detect these
false sensor or false control attacks in real-time.

2.1 Background
A general feedback control system has four components:

(1) the physical phenomena of interest (sometimes called
the process or plant), (2) sensors that send a time series yk
denoting the value of the physical measurement zk at time
k (e.g., the voltage at 3am is 120kV) to a controller, (3)
based on the sensor measurements received yk, the controller
K(yk) sends control commands uk (e.g., open a valve by 10
%) to actuators, and (4) actuators that produce a physical
change vk in response to the control command (the actuator
is the device that opens the valve).

A general security monitoring architecture for control sys-
tems that looks into the “physics” of the system needs an
anomaly detection system that receives as inputs the sensor
measurements yk from the physical system and the control
commands uk sent to the physical system, and then uses
them to identify any suspicious sensor or control commands
is shown in Fig. 1.

2.2 Taxonomy
Anomaly detection is usually performed in two steps. First

we need a model of the physical system that predicts the
output of the system ŷk. The second step compares that
prediction ŷk to the observations yk and then performs a
statistical test on the difference. The difference between
prediction and observation is usually called the residual rk.
We now present our new taxonomy for related work, based
on four aspects: (1) physical model, (2) detection statistic,
(3) metrics, and (4) validation.

Physical Model. The model of how a physical system be-
haves can be developed from physical equations (Newton’s
laws, fluid dynamics, or electromagnetic laws) or it can be
learned from observations through a technique called system
identification [4, 38]. In system identification one often has
to use either Auto-Regressive Moving Average with eXoge-
nous inputs (ARMAX) or linear state-space models. Two

Figure 1: Different attack points in a control sys-
tem: (1) Attack on the actuators (blue): vk ≠ uk, (2)
Attack on the sensors (purple): yk ≠ zk, (3) Attack
on the controller (red): uk ≠ K(yk)

popular models used by the papers we survey are Auto-
Regressive (AR) models and Linear Dynamical State-
space (LDS) models.

An AR model for a time series yk is given by

ŷk+1 =
k

∑
i=k−N

αiyi + α0 (1)

where αi are obtained through system identification and yi
the last N sensor measurements. The coefficients αi can be
obtained by solving an optimization problem that minimizes
the residual error (e.g., least squares) [37].

If we have inputs (control commands uk) and outputs
(sensor measurements yk) available, we can use subspace
model identification methods, producing LDS models:

xk+1 = Axk +Buk + εk
yk = Cxk +Duk + ek (2)

where A, B, C, and D are matrices modeling the dynamics
of the physical system. Most physical systems are strictly
causal and therefore D = 0 in general. The control com-
mands uk ∈ Rp

affect the next time step of the state of the
system xk ∈ Rn

and sensor measurements yk ∈ Rq
are mod-

eled as a linear combination of these hidden states. ek and
εk are sensor and perturbation noise, and are assumed to be
a random process with zero mean. To make a prediction,
we i) first need yk and uk to obtain a state estimate x̂k+1
and ii) use the estimate to predict ŷk+1 = Cx̂k+1. A large
body of work on power systems employs the second equation
from Eq. (2) without the dynamic state equation. We refer
to this special case of LDS used in power systems as Static
Linear State-space (SLS) models.

Detection Statistic. If the observations we get from sen-
sors yk are significantly different from the ones we expect
(i.e., if the residual is large), we generate an alert. A State-
less test raises an alarm for every deviation at time k: i.e.,
if ∣yk − ŷk∣ = rk ≥ τ , where τ is a threshold.

In a Stateful test we compute an additional statistic Sk

that keeps track of the historical changes of rk (no mat-
ter how small) and generate an alert if Sk ≥ τ , i.e., if
there is a persistent deviation across multiple time-steps.
There are many tests that can keep track of the histori-
cal behavior of the residual rk such as taking an average
over a time-window, an exponential weighted moving aver-
age (EWMA), or using change detection statistics such as
the non-parametric CUmulative SUM (CUSUM) statistic.

The nonparametric CUSUM statistic is defined recursively
as S0 = 0 and Sk+1 = (Sk + ∣rk∣− δ)+, where (x)+ represents
max(0, x) and δ is selected so that the expected value of
∣rk∣ − δ < 0 under hypothesis H0 (i.e., δ prevents Sk from



increasing consistently under normal operation). An alert
is generated whenever the statistic is greater than a previ-
ously defined threshold Sk > τ and the test is restarted with
Sk+1 = 0. The summary of our taxonomy for modeling the
system and to detect an anomaly in the residuals is given in
Fig. 2.

Physical 
Model

LDS or ARuk

yk

ŷkyk�1
rk = yk � ŷk

Residual Generation

Anomaly 
Detection:
Sateless or 
Stateful

rk

Detection

alert

Figure 2: The detection block from Fig. 1 focusing
on our taxonomy.

Metrics. An evaluation metric is used to determine the ef-
fectiveness of the physics-based attack detection algorithm.
Popular evaluation metrics are the True Positive Rate (TPR)
and the False Positive Rate (FPR)—the trade-off between
these two numbers is called the Receiver Operating Char-
acteristic (ROC) curve. Some papers just plot the residuals
(without quantifying the TPR or FPR values), and other
papers just measure the impact of attacks.

Validation. The experimental setting to validate proposals
can use simulations, data from real-world operating systems,
and testbeds. Testbeds can be classified as testbeds control-
ling a real-system or a testbed with Hardware-in-the-Loop
(HIL) where part of the physical system is simulated in a
computer. For our purposes a HIL testbed is similar to
having pure simulations, because the model of the physical
system is given by the algorithm running on a computer.

2.3 Limitations of Previous Work
There is a large variety of previous work but because of the

diversity of domains (e.g., power systems, industrial control,
and theoretical studies) and academic venues (e.g., security,
control theory, and power systems conferences), the field
has not been presented in a unified way with a common
language that can be used to identify trends, alternatives,
and limitations. Using our previously defined taxonomy, in
this section we discuss previous work and summarize our
results in Table 1.

The columns in Table 1 are arranged by conference venue
(we assigned workshops to the venue that the main con-
ference is associated with). We also assigned conferences
associated with CPSWeek to control conferences because of
the overlap of attendees to both venues. We make the fol-
lowing observations: (1) the vast majority of prior work use
stateless tests; (2) most control and power grid venues use
LDS (or their static counterpart SLS) to model the physical
system, while computer security venues tend to use a vari-
ety of models; several of them are non-standard and difficult
to replicate by other researchers; (3) there is no consistent
metric or adversary model used to evaluate proposed attack-
detection algorithms; and (4) no previous work has validated
their work with all three options: simulations, testbeds, and
real-world data.

The first three observations (1-3) are related: while previ-
ous work has used different statistical tests (stateless vs. state-
ful) and models of the physical system to predict its expected
behavior, so far they have not been compared against each

other, and this makes it difficult to build upon previous work
(it is impossible to identify best practices without a way
to compare different proposals). To address this problem
we propose a general-purpose evaluation metric in § 4 that
leverages our stealthy adversary model, and then compare
previously proposed methods. Our results show that while
stateless tests are more popular in the literature, stateful
tests are better to limit the impact of stealthy attackers.
In addition, we show that LDS models are better than AR
models, that AR models proposed in previous work can be
improved by leveraging correlation among different signals,
and that having an integral controller can limit the impact
of stealthy actuation attacks.

To address point (4) we conduct experiments using all
three options: a testbed with a real physical process under
control § 5.1, real-world data § 5.2, and simulations § 5.3. We
show the advantages and disadvantages of each experimental
setup, and the insights each of these experiments provide.

3. MOTIVATING EXAMPLE
We use a water treatment testbed consisting of six stages

to purify raw water. The testbed has a total of 12 PLCs (six
main PLCs and six in backup configuration to take over if
the main PLC fails). The general description of each stage is
as follows: Raw water storage is the part of the process where
raw water is stored and it acts as the main water buffer sup-
plying water to the water treatment system. It consists of
one tank, an on/off valve that controls the inlet water, and
a pump that transfers the water to the ultra filtration (UF)
tank. In Pre-treatment the conductivity, pH, and Oxidation-
Reduction Potential (ORP) are measured to determine the
activation of chemical dosing to maintain the quality of the
water within some desirable limits. This stage is illustrated
in Fig. 3 and will be used in our motivating example. Ul-
tra Filtration (UF) is used to remove the bulk of the feed
water solids and colloidal material by using fine filtration
membranes that only allow the flow of small molecules. Af-
ter the small residuals are removed by the UF system, the
remaining chlorines are destroyed in the Dechlorinization
stage, using an ultraviolet chlorine destruction unit and by
dosing a solution of sodium bisulphite. Reverse Osmosis
(RO) system is designed to reduce inorganic impurities by
pumping the filtrated and dechlorinated water with a high
pressure. Finally, the RO final product stage stores the RO
product (clean water).

Figure 3: Stage controlling the pH level.

Attacking the pH level. In this process, the water’s pH
level is controlled by dosing the water with Hydrochloric
Acid (HCl). Fig. 4 illustrates the normal operation of the
plant: if the pH sensor reports a level above 7.05, the PLC
sends a signal to turn On the HCl pump, and if the sensor
reports a level below 6.95, it sends a signal to turn it Off.



Table 1: Taxonomy of related work. Columns are organized by publication venue.
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Venue Control Smart/Power Grid Security Misc.

Detection Statistic
stateless ● ● ● - - - ● ● ● G# ● ● ● ● ● - ● G# ● - ● ● ● ● ● - ● - ● G# ● - ● - G# G# - - ● ● ● ● ● - ●
stateful - - - G# ⊛ ⊛ - - - - - - - - - ● - - - ⊛ - - - - - ⊛ - ● - - - ⊛ - ● - - ● ● ● - - ● - ⊛ -

Physical Model
AR - - - - - - - - - - - - - - - - - - - - - - - - - - - ● - - - - ● - - - - - - - - - - - -
SLS ● ● G# - - - - - - - - - - - - - - - - ● ● ● ● ● G# - - - ● - - - - - - - - - - G# G# ● - - -
LDS - - - ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● - - - - - - - - - - - - ● - ● - - ● - - - - - - - -

other - - - - - - - - - - - - - - - - - - - - - - - - - ● ● - - G# G# - - - ● ● - ● ● - - - ● G# ●

Metrics
∗

impact - ● - ● - - ● - ● ● - ● ● ● ● - - - ● ● - ● - ● - - ● ● ● - ● - - - - - ● - - ● - ● - ● -
statistic - - ● - ● - - ● ● - - ● ● ● ● - ● - - ● - - ● - - - ● - ● - - - - - - - - ● ● ● - ● - - ●

TPR - - - - ● ● - - - - ● - - - - ● - - - - ● - ● - - ● - - - - - ● ● - ● - - - - - - - ● - -
FPR - - - - ● - - - - - ● - - - - ● - - - - - - ● - - ● - ● - - - ● - - ● - - - - - - - ● - -

Validation
simulation - ● ● ● ● ● ● ● ● ● ● ● ● ● - ● - ● ● ● - ● ● ● ● ● G# - ● - ● - - ● ● - ● - ● ● ● ● - - ●

real data - - - - - - - - - - - - - - - - ● - - - - - - - G# ● - ● - - - - ● - - - - ● - - - - - ● -
testbed - - - - - - - - - - - - - - ● - - - ● - - - - - - - - - - G# - ● ● - - ● - - - - - - ● - -

Legend: ●: feature considered by authors, G#: feature assumed implicitly but exhibits ambiguity, ⊛: a windowed stateful
detection method is used,

∗
Evaluation options have been abbreviated in the table: Attack Impact, Statistic Visualization,

True Positive Rate, False Positive Rate.

The wide oscillations of the pH levels occur because there is
a delay between the control actions of the HCl pump, and
the water pH responding to it.
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Figure 4: During normal operation, the water pH is
kept in safe levels.

To detect attacks on the PLC, the pump, or the sensor,
we need to create a model of the physical system. While
the system is nonlinear, let us first attempt to model it as
time-delayed LDS of order 2. The model is described by
pHk+1 = pHk + uk−Tdelay

, where we estimate (by observing

the process behavior) uk−Tdelay
= −0.1 after a delay of 35

time steps after the pump is turned On, and 0.1 after a delay
of 20 time steps after it is turned Off. We then compare the
predicted and observed behavior, compute the residual, and
apply a stateless, and a stateful test to the residual. If either
of these statistics goes above a defined threshold, we raise
an alarm.

We note that high or low pH levels can be dangerous.
In particular, if the attacker can drive the pH below 5, the
acidity of the water will damage the membranes of the Ultra
Filtration and Reverse Osmosis stages, the pipes, and even
sensor probes.

We launch a wired Man-In-The-Middle (MitM) attack be-
tween the field devices (sensors and actuators) and the PLC

by injecting a malicious device in the EtherNet/IP ring of
the testbed, given that the implementation of this protocol
is unauthenticated. A detailed implementation of our attack
is given in our previous work [64]. In particular, our MitM
intercepts sensor values coming from the HCL pump and
the pH sensor, and intercepts actuator commands going to
the HCl pump, to inject false sensor readings and commands
sent to the PLC and HCl pump.
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Figure 5: Attack to the pH sensor.

Our attack sends false sensor data to the PLC, faking a
high pH level so the pump keeps running, and thus driving
the acidity of the water to unsafe levels, as illustrated in
Fig. 5. Notice that both, stateless and stateful tests detect
this attack (each test has a different threshold set to main-
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Figure 6: Attack to the pump actuator.

tain a probability of false alarm of 0.01). We also launched
an attack on the pump (actuator). Here the pump ignores
Off control commands from the PLC, and sends back mes-
sages stating that it is indeed Off, while in reality it is On.
As illustrated in Fig. 6, only the stateful test detects this
attack. We also launched several random attacks that were
easily detected by the stateful statistic, and if we were to
plot the ROC curve of these attacks, we would get 100%
detection rate.

Observations. As we can see, it is very easy to create
attacks that can be detected. Under these simulations we
could initially conclude that our LDS model combined with
the stateful anomaly detection are good enough; after all,
they detected all attacks we launched. However, are these
attacks enough to conclude that our LDS model is good
enough? And if these attacks are not enough, then which
types of attacks should we launch?

Notice that for any physical system, a sophisticated at-
tacker can spoof deviations that follow relatively close the
“physics” of the system while still driving the system to a
different state. How can we measure the performance of our
anomaly detection algorithm against these attacks? How
can we measure the effectiveness of our anomaly detection
tool if we assume that the attacker will always adapt to our
algorithms and launch an undetected attack? And if our
algorithms are not good enough, how can we design better
algorithms? If by definition the attack is undetected, then
we will always have a 0% true positive rate, therefore we
need to devise new metrics to evaluate our systems.

Attacks

D

T

Figure 7: Our attacker adapts to different detection
thresholds: If we select τ2 the adversary launches
an attack such that the detection statistic (dotted
blue) remains below τ2. If we lower our threshold to
τ1, the adversary selects a new attack such that the
detection statistic (solid red) remains below τ1.

4. A STRONGER ADVERSARY MODEL
We assume an attacker that has compromised a sensor

(e.g., pH level in our motivating example) or an actuator
(e.g., pump in our motivating example) in our system. We
also assume that the adversary has complete knowledge of
our system, i.e., she knows the physical model we use, the
statistical test we use, and the thresholds we select to raise
alerts. Given this knowledge, she generates a stealthy at-
tack, where the detection statistic will always remain below
the selected threshold.

While similar stealthy attacks have been previously pro-
posed [13, 35, 36], in this paper we extend them for generic
control systems including process perturbations and mea-
surement noise, we force the attacks to remain stealthy against
stateful tests, and also force the adversary to optimize the
negative impact of the attack. In addition, we assume our
adversary is adaptive, so if we lower the threshold to fire
an alert, the attacker will also change the attack so that
the anomaly detection statistic remains below the thresh-
old. This last property is illustrated in Fig. 7.

Notice that this type of adaptive behavior is different from
how traditional metrics such as ROC curves work, because
they use the same attacks for different thresholds of the
anomaly detector. On the other hand, our adversary model
requires a new and unique (undetected) attack specifically
tailored for every anomaly detection threshold. If we try
to compute an ROC curve under our adversary model, we
would get a 0% detection rate because the attacker would
generate a new undetected attack for every anomaly detec-
tion threshold.

This problem is not unique to ROC curves: most popular
metrics for evaluating the classification accuracy of intrusion
detection systems (like the intrusion detection capability, the
Bayesian detection rate, accuracy, expected cost, etc.) are
known to be a multi-criteria optimization problem between
two fundamental trade-off properties: the false alarm rate,
and the true positive rate [11], and as we have argued, using
any metric that requires a true positive rate will be inef-
fective against our adversary model launching undetected
attacks.

Observation. Most intrusion detection metrics are varia-
tions of the fundamental trade-off between false alarms and
true positive rates [11], however, our adversary by definition
will never be detected so we cannot use true positive rates
(or variations thereof). Notice however that by forcing our
adversary to remain undetected, we are effectively forcing
her to launch attacks that follow closely the physical behav-
ior of the system (more precisely, we are forcing our attacker
to follow more closely our Physical Model), and by following
closer the behavior of the system, then the attack impact is
reduced: the attack needs to appear to be a plausible phys-
ical system behavior. So the trade-off we are looking for
with this new adversary model is not one of false positives
vs. true positives, but one between false positives and the
impact of undetected attacks.

New Metric. To define precisely what we mean by impact
of undetected attack we select one (or more) variables of
interest (usually a variable whose compromise can affect the
safety of the system) in the process we want to control–
e.g., the pH level in our motivating example. The impact
of the undetected attack will then be, how much can the
attacker drive that value towards its intended goal (e.g., how
much can the attacker lower the pH level while remaining
undetected) per unit of time.

Therefore we propose a new metric consisting of the trade-



Longer time between false alarms = More Usable

Detector 2 is better than Detector 1:
For the same level of false alarms,
undetected attackers can cause
less damage to the system

Le
ss

 d
e
v
ia

ti
o
n
 =

 M
o
re

 S
e
cu

re

Usability Metric: Expected time between false alarms

S
e
cu

ri
ty

 M
e
tr

ic
:

M
a
x
im

u
m

 d
e
v
ia

ti
o
n
 i
m

p
o
se

d
 

b
y
 u

n
d

e
te

ct
e
d

 a
tt

a
ck

s 
p

e
r 

ti
m

e
 u

n
it Tradeoff Curve of Detector 1

Tradeoff Curve of Detector 2

Figure 8: Illustration of our proposed tradeoff met-
ric. The y-axis is a measure of the maximum devi-
ation imposed by undetected attacks per time unit
∆X/TU , and the x-axis represents the expected time
between false alarms E[Tfa]. Anomaly detection al-
gorithms are then evaluated for different points in
this space.

off between the maximum deviation per time unit imposed
by undetected attacks (y-axis) and the expected time be-
tween false alarms (x-axis). Our proposed trade-off metric
is illustrated in Fig. 8, and its comparison to the perfor-
mance of Receiver Operating Characteristic (ROC) curves
against our proposed adversary model is illustrated in Fig. 9.

ROC for
Stronger Adversary Model

New Metrics for
Stronger Adversary Model

Figure 9: Comparison of ROC curves with our pro-
posed metric: ROC curves are not a useful metric
against a stealthy and adaptive adversary.

Notice that while the y-axis of our proposed metric is com-
pletely different to ROC curves, the x-axis is similar, but
with a key difference: instead of using the probability of
false alarms, we use instead the expected time between false
alarms E[Tfa]. This quantity has a couple of advantages
over the false alarm rate: (1) it addresses the deceptive na-
ture of low false alarm rates due to the base-rate fallacy [5],
and (2) it addresses the problem that several anomaly de-
tection statistics make a decision (“alarm” or “normal be-
havior”) at non-constant time-intervals.

We now describe how to compute the y-axis and the x-axis
of our proposed metric.

4.1 Computing the X and Y axis of Fig. 8
Computing Attacks Designed for the Y-axis of our
Metric. The adversary wants to maximize the deviation
of a variable of interest yk (per time unit) without being
detected. The true value of this variable is yk, yk+1, . . . , yN ,
and the attack starts at time k, resulting in a new observed
time series y

a
k , y

a
k+1, . . . , y

a
N . The goal of the attacker is to

maximize the distance maxi ∣∣yi−yai ∣∣. Recall that in general
yk can be a vector of n sensor measurements, and that the

attack y
a
k is a new vector where some (or all) of the sensor

measurements are compromised.
An optimal greedy-attack (y

a∗
) at time k ∈ [κ, κf ] (where

κ and κf are the initial and final attack times, respectively),

satisfies the equation: y
a∗
k+1 = arg maxya

k+1
f(yak+1) (where

f(yak+1) is defined by the designer of the detection method
to quantify the attack impact) subject to not raising an alert
(instead of max it can be min). For instance, if f(yak+1) =
∥yk+1−yak+1∥, the greedy attack for a stateless test is: y

a∗
k+1 =

ŷk+1 ± τ. The greedy optimization problem for an attacker
facing a stateful CUSUM test becomes y

a∗
k+1 = max{yak+1 ∶

Sk+1 ≤ τ}. Because Sk+1 = (Sk+rk−δ) the optimal attack is
given when Sk = τ , which results in y

a∗
k+1 = ŷk+1±(τ+δ−Sk).

For all attack times k greater than the initial time of attack
κ, Sk = τ and y

a∗
k+1 = ŷk+1 ± δ.

Generating undetectable actuator attacks is more diffi-
cult than sensor attacks because in several practical cases
it is impossible to predict the outcome yk+1 with 100% accu-
racy, given the actuation attack signal vk in Fig. 1. For our
experiments when the control signal is compromised in § 5.3,
we use the linear state space model from Eq. (2) to do a re-
verse prediction from the intended y

a∗
k+1 to obtain the control

signal vk that will generate that next sensor observation.

Computing the X-axis of our Metric. Most of the lit-
erature that reports false alarms uses the false alarm rate
metric. This value obscures the practical interpretation of
false alarms: for example a 0.1% false alarm rate depends
on the number of times an anomaly decision was made, and
the time-duration of the experiment: and these are vari-
ables that can be selected: for example a stateful anomaly
detection algorithm that monitors the difference between ex-
pected ŷk and observed yk behavior has three options with
every new observation k: (1) it can declare the behavior as
normal, (2) it can generate an alert, (3) it can decide that
the current evidence is inconclusive, and it can decide to
take one more measurement yk+1.

Because the amount of time T that we have to observe the
process and then make a decision is not fixed, but rather is
a variable that can be selected, using the false alarm rate is
misleading and therefore we have to use ideas from sequential
detection theory [24]. In particular, we use the average time
between false alarms TFA, or more precisely, the expected
time between false alarms E[TFA]. We argue that telling
security analysts that e.g., they should expect a false alarm
every hour is a more direct and intuitive metric rather than
giving them a probability of false alarm number over a deci-
sion period that will be variable if we use stateful anomaly
detection tests. This way of measuring alarms also deals
with the base rate fallacy, which is the problem where low
false alarm rates such as 0.1% do not have any meaning un-
less we understand the likelihood of attacks in the dataset
(the base rate of attacks). If the likelihood of attack is low,
then low false alarm rates can be deceptive [5].

In all the experiments, the usability metric for each evalu-
ated detection mechanism is obtained by counting the num-
ber of false alarms nFA for an experiment with a duration
TE under normal operation (without attack), so for each
threshold τ we calculate the estimated time for a false alarm
by E[Tfa] ≈ TE/nFA. Computing the average time be-
tween false alarms in the CUSUM test is more complicated
than with the stateless test. In the CUSUM case, we need to
compute the evolution of the statistic Sk for every threshold
we test, because once Sk hits the threshold we have to reset
it to zero.

Notice that while we have defined a specific impact for



Algorithm 1: Computing Y axis

1: Define f(yak+1)
2: Select τset = {τ1, τ2, . . .}, κ, κf , and
Kset = {κ, . . . , kf − 1}

3: ∀(τ, k) ∈ τset ×Kset, find
4:

y
a∗
k+1(τ) = arg max

ya
k+1

f(yak+1)

s.t.

Detection Statistic ≤ τ

5: ∀τ ∈ τset, calculate

y − axis = max
k∈Kset

f(ya∗k+1(τ))

Algorithm 2: Computing X axis

1: Observations Y
na

with no attacks of time-duration TE

2: ∀τ ∈ τset, compute

Detection Statistic: DS(Y na)
Number of false alarms: nFA(DS , τ)
x − axis = E[Tfa(τ)] = TE/nFA

undetected attacks in our y-axis for clarity, we believe that
designers who want to evaluate their system using our met-
ric should define an appropriate worst case undetected attack
optimization problem specifically for their system. In par-
ticular, the y-axis can be a representation of a cost function
f of interest to the designer. There are a variety of metrics
(optimization objectives) that can be measured such as the
product degradation from undetected attacks, or the histor-
ical deviation of the system under attack ∑i ∣yi − ŷ

a
i ∣ or the

deviation at the end of the attack ∣yN − ŷaN ∣, etc. A sum-
mary of how to compute the y-axis and the x-axis of our
metric is given in Algorithms 1 and 2.

5. EXPERIMENTAL RESULTS

Table 2: Advantages and disadvantages of different
evaluation setups.

Reliability of: X-Axis Y-Axis

Real Data  #
Testbed G# G#
Simulation #  

 = well suited, G# = partially suitable, # = least suitable

We evaluate anomaly detection systems under the light of
our Stronger Adversary Model (see section § 4), using our
new metrics in a range of test environments, with individ-
ual strengths and weaknesses (see Table 2). As shown in
the table, real-world data allows us to analyze operational
large-scale scenarios, and therefore it is the best way to test
the x-axis metric E[Tfa]. Unfortunately, real-world data
does not give researchers the flexibility to launch attacks
and measure the impact on all parts of the system. Such
interactive testing requires the use of a dedicated physical
testbed.

A physical testbed has typically a smaller scale than a
real-world operational system, so the fidelity in false alarms
might not be as good as with real data, but on the other
hand, we can launch attacks. The attacks we can launch are,
however, constrained because physical components and de-
vices may suffer damage by attacks that violate the safety re-
quirements and conditions for which they were designed for.
Moreover, attacks could also drive the testbed to states that
endanger the operator’s and environment’s safety. There-
fore, while a testbed provides more experimental interaction
than real data, it introduces safety constraints for launching
attacks.

Simulations on the other hand, do not have these con-
straints and a wide variety of attacks can be launched. So
our simulations will focus on attacks to actuators and demon-
strate settings that cannot be achieved while operating a
real-world system because of safety constraints. Simulations
also allow us to easily change the control algorithms and to
our surprise, we found that control algorithms have a big
impact on the ability of our attacker to achieve good results
in the y-axis of our metric. However, while simulations allow
us to test a wide variety of attacks, the problem is that the
false alarms measured with a simulation are not going to be
as representative as those obtained from real data or from a
testbed.

5.1 Physical Testbed (EtherNet/IP packets)
In this section, we focus on testbeds that control a real

physical process, as opposed to testbeds that use a Hardware-
In-the-Loop (HIL) simulation of the physical process. A HIL
testbed is similar to the experiments we describe in § 5.3.

We developed an attacker who has complete knowledge
of the physical behavior of the system and can manipulate
EtherNet/IP packets and inject attacks. We now apply our
metric to the experiments we started in section § 3.

Attacking pH Level. Because this system is highly non-
linear, apart from the simple physical model (LDS) of or-
der 2 we presented in section § 3, we also applied a system
identification to calculate higher order system models: an
LDS model of order 20 and two nonlinear models (order
50 and 100) based on wavelet networks [52]. Fig. 10 shows
the minimum pH achieved by the attacker after 4-minutes
and against three different models. Notice that the nonlin-
ear models limited the impact of the stealthy attack by not
allowing deviations below a pH of 5, while our linear model
(which was successful in detecting attacks in our motivating
example) was not able to prevent the attacker from taking
the pH below 5.

5 6 7 8 9 10 11 12
Time (min)
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pH

pH with Nonlinear order-100
pH with Nonlinear order-50
pH with LDS order-20
pH without Attack

Attack

Figure 10: pH deviation imposed by greedy attacks
while using stateful detection (τ = 0.05) with both,
LDS and nonlinear models.
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Figure 11: Comparison of LDS and nonlinear mod-
els to limit attack impact using our metric. Higher
order nonlinear models perform better.

Fig. 11 illustrates the application of our proposed metric
over ten different undetected greedy attacks, each averaging
4 minutes, to evaluate the three system models used for
detection. Given enough time, it is not possible to restrict a
deviation of pH below 5. Nevertheless, for all E[Tfa](min),
the nonlinear model of order 100 performs better than the
nonlinear model of order 50 and the LDS of order 20, limiting
the impact of the attack per minute ∆pH/min. It would take
over 5 minutes for the attacker to deviate the pH below 5
without being detected using a nonlinear model of order 100,
whereas it would take less than 3 minutes with the nonlinear
of order 50 and the LDS of order 20.

5.1.1 Attacking the Water Level
Now we turn to another stage in our testbed. The goal of

the attacker this time is to deviate the water level in a tank
as much as possible until the tank overflows.

While in the pH example we had to use system identifi-
cation to learn LDS and nonlinear models, the evolution of
the water level in a tank is a well-known LDS system that
can be derived from first principles. In particular, we use a
mass balance equation that relates the change in the water

level h with respect to the inlet Q
in

and outlet Q
out

volume

of water, given by Area dh

dt
= Q

in −Qout
, where Area is the

cross-sectional area of the base of the tank. Note that in
this process the control actions for the valve and pump are

On/Off. Hence, Q
in

or Q
out

remain constant if they are
open, and zero otherwise. Using a time-discretization of 1 s,
we obtain an LDS model of the form

hk+1 = hk +
Q

in
k −Qout

k

Area
.

Note that while this equation might look like an AR model,

it is in fact an LDS model because the input Q
in
k − Q

out
k

changes over time, depending on the control actions of the
PLC (open/close inlet or start/stop pump). In particular

it is an LDS model with xk = hk, uk = [Qin
k , Q

out
k ]T , B =

[ 1

Area
,− 1

Area
], A = 1, and C = 1.

Recall that the goal of the attacker is to deviate the water
level in a tank as much as possible until the tank overflows.
In particular, the attacker increases the water level sensor
signal at a lower rate than the real level of water (Fig. 12)
with the goal of overflowing the tank. A successful attack
occurs if the PLC receives from the sensor a High water-level
message (the point when the PLC sends a command to close
the inlet), and at that point, the deviation (∆) between the
real level of water and the“fake”level (which just reached the
High warning) is ∆ ≥ Overflow −High. Fig. 12 shows three

water level attacks with different increment rates, starting
from the Low level setting and stopping at the High level
setting, and their induced maximum ∆ over the real level.
Only attacks a1 and a2 achieve a successful overflow (only
a2 achieves a water spill), while a3 deviates the water level
without overflow. In our experiment, High corresponds to a
water level of 0.8 m and Low to 0.5 m. Overflow occurs at
1.1 m. The testbed has a drainage system to allow attacks
that overflow the tank.

Figure 12: Impact of different increment rates on
overflow attack. The attacker has to select the rate
of increase with the lowest slope while remaining
undetected.
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Figure 13: Comparison of stateful and stateless de-
tection. At 0.3m the tank overflows, so stateless
tests are not good for this use case. τb, τc correspond
to the threshold associated to some E[Tfa].

Because it was derived from “first principles”, our LDS
model is a highly accurate physical model of the system, so
there is no need to test alternative physical models. How-
ever, we can combine our LDS model with a stateless test
and with a stateful test, and see which of these detection
tests can limit the impact of stealthy attacks.

In particular, to compute our metric we need to test state-
less and stateful mechanisms and obtain the security metric
that quantifies the impact ∆ of undetected attacks for sev-
eral thresholds τ . We selected the parameter δ = 0.002 for
the stateful (CUSUM) algorithm, such that the detection
metric Sk remains close to zero when there is no attack.
The usability metric is calculated for TE = 8 h, which is the
time of the experiment without attacks.

Fig. 13 illustrates the maximum impact caused by 20 dif-
ferent undetected attacks, each of them averaging 40 min-
utes. Even though the attacks remained undetected, the
impact using stateless detection is such that a large amount
of water can be spilled. Only for very small thresholds is it
possible to avoid overflow, but it causes a large number of
false alarms. On the other hand, stateful detection limits



the impact of the adversary. Note that to start spilling wa-
ter (i.e., ∆ > 0.3 m) a large threshold is required. Clearly,
selecting a threshold such that E[Tfa] = 170 min can avoid
the spilling of water with a considerable tolerable number of
false alarms.

In addition to attacking sensor values, we would like to
analyze undetected actuation attacks. To launch attacks on
the actuators (pumps) of this testbed, we would need to turn
them On and Off in rapid succession in order try to main-
tain the residuals of the system low enough to avoid being
detected. We cannot do this on real equipment because the
pumps would get damaged. Therefore, we will analyze unde-
tected actuator attacks with simulations (where equipment
cannot be damaged) in § 5.3.

5.2 Large-Scale Operational Systems (Modbus
packets)

We were allowed to place a network sniffer on a real-world
operational large-scale water facility in the U.S. We collected
more than 200GB of network packet captures of a system
using the Modbus/TCP [63] industrial protocol. Our goal
is to extract the sensor and control commands from this
trace and evaluate and compare alternatives presented in
the survey.

The network has more than 100 controllers, some of them
with more than a thousand registers. In particular, 1) 95%
of transmissions are Modbus packets and the rest 5% corre-
sponds to general Internet protocols; 2) the trace captured
108 Modbus devices, of which one acts as central master,
one as external network gateway, and 106 are slave PLCs;
3) of the commands sent from the master to the PLCs, 74%
are Read/Write Multiple Registers (0x17) commands, 20%
are Read Coils (0x01) commands, and 6% are Read Discrete
Inputs (0x02) commands; and 4) 78% of PLCs count with
200 to 600 registers, 15% between 600 to 1000, and 7% with
more than 1000.

We replay the traffic traces in packet capture (pcap) for-
mat and use Bro [51] to track the memory map of holding
(read/write) registers from PLCs. We then use Pandas [68],
a Python Data Analysis Library, to parse the log generated
by Bro and to extract per PLC the time series correspond-
ing to each of the registers. Each time series corresponds to
a signal (yk) in our experiments. We classify the signals as
91.5% constant, 5.3% discrete, and 3.2% continuous based
on the data characterization approach proposed to analyze
Modbus traces [21] and uses AR models (as in Eq. (1)). We
follow that approach by modeling the continuous time-series
in our dataset with AR models. The order of the AR model
is selected using the Best Fit criteria from the Matlab sys-
tem identification toolbox [39], which uses unexplained out-
put variance, i.e., the portion of the output not explained
by the AR model for various orders [41].

Using the AR model, our first experiment centers on de-
ciding which statistical detection test is better, a stateless
test or the stateful CUSUM change detection test. Fig. 14
shows the comparison of stateless vs. stateful tests with our
proposed metrics (where the duration of an undetected at-
tack is 10 minutes). As expected, once the CUSUM statis-
tic reaches the threshold Sk = τ , the attack no longer has
enough room to continue deviating the signal without be-
ing detected, and larger thresholds τ do not make a differ-
ence once the attacker reaches the threshold, whereas for
the stateless test, the attacker has the ability to change the
measurement by τ units at every time step.

Having shown that a CUSUM (stateful) test reduces the

impact of a stealthy attack when compared to the stateless
test, we now show how to improve the AR physical model
previously used by Hadziosmanovic et al. [21]. In particular,
we notice that Hadziosmanovic et al. use an AR model per
signal ; this misses the opportunity of creating models of
how multiple signals are correlated, and creating correlated
physical models will limit the impact of undetected attacks.
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Figure 14: Stateful performs better than stateless
detection: The attacker can send larger undetected
false measurements for the same expected time to
false alarms.
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Figure 15: Three example signals with significant
correlations. Signal S16 is more correlated with S19

than it is with S8.

Spatial and Temporal Correlation. In an ideal situ-
ation the water utility operators could help us identify all
control loops and spatial correlations of all variables (the
water pump that controls the level of water in a tank etc.);
however, this process becomes difficult to perform in a large-
scale system with thousands of control and sensor signals
exchanged every second; therefore we now attempt to find
correlations empirically from our data. We correlate sig-
nals by computing the correlation coefficients of different
signals s1, s2, ⋯, sN . The correlation coefficient is a nor-
malized variant of the mathematical covariance function:
corr(si, sj) =

cov(si,sj )√
cov(si,si)cov(sj ,sj )

where cov(si, sj) denotes

the covariance between si and sj and correlation ranges
between −1 ≤ corr(si, sj) ≤ 1. We then calculate the p-
value of the test to measure the significance of the corre-
lation between signals. The p-value is the probability of
having a correlation as large (or as negative) as the ob-
served value when the true correlation is zero (i.e., testing
the null hypothesis of no correlation, so lower values of p
indicate higher evidence of correlation). We were able to
find 8,620 correlations to be highly significant with p = 0.



Because corr(si, sj) = corr(sj , si) there are 4,310 unique sig-
nificant correlated pairs. We narrow down our attention to
corr(si, sj) > .96. Fig. 15 illustrates three of the correlated
signals we found. Signals s16 and s19 are highly correlated
with corr(s16, s19) = .9924 while s8 and s19 are correlated
but with a lower correlation coefficient of corr(s8, s19) =

.9657. For our study we selected to use signal s8 and its
most correlated signal s17 which are among the top most
correlated signal pairs we found with corr(S8, S17) = .9996.
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Figure 16: Using the defined metrics, we show how
our new correlated AR models perform better (with
stateless or stateful tests) than the AR models of
independent signals.

Our experiments show that an AR model trained with cor-
related signals (see Fig. 16) is more effective in limiting the
maximum deviation the attacker can achieve (assuming the
attacker only compromises one of the signals). For that rea-
son, we encourage future work to use correlated AR models
rather than AR models of single signals.

5.3 Simulations of the Physical World
With simulations we can launch actuator attacks without

the safety risk of damaging physical equipment. In partic-
ular, in this section we launch actuation attacks and show
how the control algorithm used can significantly limit the
impact of stealthy attackers. In particular we show that the
Integrative part of a Proportional Integral Derivative (PID)
control algorithm (or a PI or I control algorithm) can correct
the deviation injected by the malicious actuator, and force
the system to return to the correct operating state.

We use simulations of primary frequency control in the
power grid as this is the scenario used by the Aurora at-
tack [69]. Our goal is to maintain the frequency of the power
grid as close as possible to 60Hz, subject to perturbations—
i.e., changes in the Mega Watt (MW) demand by consumers—
and attacks.

We assume that the attacker takes control of the actua-
tors. When we consider attacks on a control signal, we need
to be careful to specify whether or not the anomaly detection
system can observe the false control signal. In this section,
we assume the worst case: our anomaly detection algorithm
cannot see the manipulated signal and indirectly observes
the attack effects from sensors (e.g., vk is controlled by the
attacker, while the detection algorithm observes the valid uk

control signal, see Fig. 1).
Attacking a sensor is easier for our stealthy adversary be-

cause she knows the exact false sensor value ŷ that will al-
low her to remain undetected while causing maximum dam-
age. On the other hand, by attacking the actuator the at-
tacker needs to find the input uk that deviates the frequency
enough, but still remains undetected. This is harder be-
cause even if the attacker has a model of the system, the

output signal is not under complete control of the attacker:
consumers can also affect the frequency of the system (by
increasing or decreasing electricity consumption), and there-
fore they can cause an alarm to be generated if the attacker
is not conservative. We assume the worst possible case of
an omniscient adversary that knows how much consumption
will happen at the next time-step (this is a conservative ap-
proach to evaluate the security of our system; in practice
we expect the anomaly detection system to perform better
because no attacker can predict the future).
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Figure 17: These figures show two things: (1) the
stateful (CUSUM) test performs better than state-
less tests when using AR (left) or LDS (right) mod-
els, and (2) LDS models perform an order of mag-
nitude better than AR models (right vs left). Only
for really small values of τ < δ (0.04 minutes on av-
erage between false alarms), will the stateless test
perform better than the stateful test.

We now evaluate all possible combinations of the pop-
ular physical models and detection statistics illustrated in
Table 1. In particular we want to test AR models vs. LDS
models estimated via system identification (SLS models do
not make sense here because our system is dynamic) and
stateless detection tests vs. stateful detection tests.

We launch an undetected actuator attack after 50 seconds
using stateless and stateful detection tests for both: AR and
LDS physical models. Our experiments show that LDS mod-
els outperform AR models, and that stateful models (again)
outperform stateless models, as illustrated in Fig 17. These
wide variations in frequency would not be tolerated in a real
system, but we let the simulations continue for large fre-
quency deviations to illustrate the order of magnitude ability
from LDS models to limit the impact of stealthy attackers
when compared to AR models.

Having settled for LDS physical models with CUSUM as
the optimal combination of physical models with detection
tests, we now evaluate the performance of different control
algorithms, a property that has rarely been explored in our
survey of related work. In particular, we show how Integra-
tive control is able to correct undetected actuation attacks.

In particular we compare one of the most popular control
algorithms: P control, and then we compare it to PI control.
If the system operator has a P control of the form uk = Kyk,
the attacker can affect the system significantly, as illustrated
in Fig. 18. However, if the system operator uses a PI control,
the effects of the attacker are limited: The actuator attack
will tend to deviate the frequency signal, but this deviation
will cause the controller to generate a cumulative compensa-
tion (due to the integral term) and because the LDS model
knows the effect of this cumulative compensation, it is going
to expect the corresponding change in the sensor measure-
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Figure 18: Left: The real (and trusted) frequency
signal is increased to a level higher than the one ex-
pected (red) by our model of physical system given
the control commands. Right: If the defender uses a
P control algorithm, the attacker is able to maintain
a large deviation of the frequency from its desired
60Hz set point.
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Figure 19: Same setup as in Fig. 18, but this time
the defender uses a PI control algorithm: this results
in the controller being able to drive the system back
to the desired 60Hz operation point.

ment. As a consequence, to maintain the distance between
the estimated and the real frequency below the threshold,
the attack would have to decrease its action. At the end,
the only way to maintain the undetected attack is when the
attack is non-existent u

a
k = 0, as shown in Fig. 19.
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Figure 20: Differences between attacking sensors
and actuators, and effects when the controller runs
a P control algorithm vs. a PI control algorithm.

In all our previous examples with attacked sensors (except
for the pH case), the worst possible deviation was achieved
at the end of the attack, but for actuation attacks (and PI
control), we can see that the controller is compensating the
attack in order to correct the observed frequency deviation,
and thus the final deviation will be zero: that is, the asymp-
totic deviation is zero, while the transient impact of the
attacker can be high. Fig. 20 illustrates the difference be-
tween measuring the maximum final deviation of the state

of the system achieved by the attacker, and the maximum
temporary deviation of the state of the system achieved by
the attacker.

As we can see, the control algorithm plays a fundamental
role in how effective an actuation attack can be. An at-
tacker that can manipulate the actuators at will can cause
a larger frequency error but for a short time when we use
PI control; however, if we use P control, the attacker can
launch more powerful attacks causing long-term effects. On
the other hand, attacks on sensors have the same long-term
negative effects independent of the type of control we use
(P or PI). Depending on the type of system, short-term ef-
fects may be more harmful than long-term errors. In our
power plant example, a sudden frequency deviation larger
than 0.5 Hz can cause irreparable damage on the generators
and equipment in transmission lines (and will trigger pro-
tection mechanisms disconnecting parts of the grid). Small
long-term deviations may cause cascading effects that can
propagate and damage the whole grid.

While it seems that the best option to protect against
actuator attacks is to deploy PI controls in all generators,
several PI controllers operating in parallel in the grid can
lead to other stability problems. Therefore often only the
central Automatic Generation Control (AGC) implements a
PI controller although distributed PI control schemes have
been proposed recently [3].

Recall that we assumed the actuation attack was launched
by an omniscient attacker that knows even the specific load
the system is going to be subjected (i.e., it knows exactly
how much will consumers demand electricity at every time-
step, something not even the controller knows). For many
practical applications, it will be impossible for the attacker
to predict exactly the consequence of its actuation attack
due to model uncertainties (consumer behavior) and random
perturbations. As such, the attacker has a non-negligible
risk of being detected when launching actuation attacks when
compared to the 100% certainty the attacker has of not be-
ing detected when launching sensor attacks. In practice,
we expect that an attacker that would like to remain unde-
tected using actuation attacks will behave conservatively to
accommodate for the uncertainties of the model, and thus
we expect that the maximum transient deviation from actu-
ation attacks will be lower.

6. CONCLUSIONS

6.1 Findings
We introduced theoretical and practical contributions to

the growing literature of physics-based attack detection in
control systems. Our literature review from different do-
mains of expertise unifies disparate terminology, and nota-
tion. We hope our efforts can help other researchers refine
and improve a common language to talk about physics-based
attack detection across computer security, control theory,
and power system venues.

In particular, in our survey we identified a lack of unified
metrics and adversary models. We explained in this paper
the limitations of previous metrics and adversary models,
and proposed a novel stealthy and adaptive adversary model,
together with its derived intrusion detection metric, that can
be used to study the effectiveness of physics-based attack-
detection algorithms in a systematic way.

We validated our approaches in multiple setups, includ-
ing: a room-size water treatment testbed, a real large-scale
operational system managing more than 100 PLCs, and sim-



ulations of primary frequency control in the power grid. We
showed in Table 2 how each of these validation setups has
advantages and disadvantages when evaluating the x-axis
and y-axis of our proposed metric.

One result we obtained across our testbed, real opera-
tional systems, and simulations is the fact that stateful tests
perform better than stateless tests. This is in stark contrast
to the popularity of stateless detection statistics as summa-
rized in Table 1. We hope our paper motivates more im-
plementations of stateful instead of stateless tests in future
work.

We also show that for a stealthy actuator attack, PI con-
trols play an important role in limiting the impact of this
attack. In particular we show that the Integrative part of
the controller corrects the system deviation and forces the
attacker to have an effective negligible impact asymptoti-
cally.

Finally, we also provided the following novel observations:
(1) finding spatio-temporal correlations of Modbus signals
has not been proposed before, and we showed that these
models are better than models of single signals, (2) while
input/output models like LDS are popular in control the-
ory, they are not frequently used in papers published in se-
curity conferences, and we should start using them because
they perform better than the alternatives, unless we deal
with a highly-nonlinear model, in which case the only way
to limit the impact of stealthy attacks is to estimate non-
linear physical models of the system, and (3) we show why
launching undetected attacks in actuators is more difficult
than in sensors.

6.2 Discussion and Future Work
While physics-based attack detection can improve the se-

curity of control systems, there are some limitations. For ex-
ample, in all our experiments the attacks affected the resid-
uals and anomaly detection statistics while keeping them
below the thresholds; however, there are special cases where
depending on the power of the attacker or the characteris-
tics of the plant, the residuals can remain zero (ignoring the
noise) while the attacker can drive the system to an arbi-
trary state. For example, if the attacker has control of all
sensors and actuators, then it can falsify the sensor readings
so that our detector believes the sensors are reporting the
expected state given the control signal, while in the mean-
time, the actuators can control the system to an arbitrary
unsafe condition.

Similarly, some properties of the physical system, such
as systems vulnerable to zero-dynamics attacks [61], un-
bounded systems [62], and highly non-linear or chaotic sys-
tems [48], can also prevent us from detecting attacks.

Finally, one of the biggest challenges for future work is
the problem of how to respond to alerts. While in some
control systems simply reporting the alert to operators can
be considered enough, we need to consider automated re-
sponse mechanisms in order to guarantee the safety of the
system. Similar ideas in our metric can be extended to
this case, where instead of measuring the false alarms, we
measure the impact of a false response. For example, our
previous work [10] considered switching a control system to
open-loop control whenever an attack in the sensors was de-
tected (meaning that the control algorithm will ignore sensor
measurements and will attempt to estimate the state of the
system based only on the expected consequences of its con-
trol commands). As a result, instead of measuring the false
alarm rate, we focused on making sure that a reconfiguration
triggered by a false alarm would never drive the system to

an unsafe state. Therefore maintaining safety under both,
attacks and false alarms, will need to take priority in the
study of any automatic response to alerts.
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[4] K. J. Åström and P. Eykhoff. System identification—a
survey. Automatica, 7(2):123–162, 1971.

[5] S. Axelsson. The base-rate fallacy and the difficulty of
intrusion detection. ACM Transactions on Information
and System Security (TISSEC), 3(3):186–205, 2000.

[6] C.-z. Bai and V. Gupta. On Kalman filtering in the
presence of a compromised sensor : Fundamental
performance bounds. In Proceedings of American
Control Conference, pages 3029–3034, 2014.

[7] C.-z. Bai, F. Pasqualetti, and V. Gupta. Security in
stochastic control systems : Fundamental limitations
and performance bounds. In Proceedings of American
Control Conference, 2015.

[8] R. B. Bobba, K. M. Rogers, Q. Wang, H. Khurana,
K. Nahrstedt, and T. J. Overbye. Detecting false data
injection attacks on DC state estimation. In
Proceedings of Workshop on Secure Control Systems,
volume 2010, 2010.

[9] A. Carcano, A. Coletta, M. Guglielmi, M. Masera,
I. N. Fovino, and A. Trombetta. A multidimensional
critical state analysis for detecting intrusions in
SCADA systems. IEEE Transactions on Industrial
Informatics, 7(2):179–186, 2011.



[10] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang,
C.-Y. Huang, and S. Sastry. Attacks against process
control systems: risk assessment, detection, and
response. In Proceedings of the ACM symposium on
information, computer and communications security,
pages 355–366, 2011.

[11] A. A. Cárdenas, J. S. Baras, and K. Seamon. A
framework for the evaluation of intrusion detection
systems. In Proceedings of Symposium on Security and
Privacy, pages 77–91. IEEE, 2006.

[12] S. Cui, Z. Han, S. Kar, T. T. Kim, H. V. Poor, and
A. Tajer. Coordinated data-injection attack and
detection in the smart grid: A detailed look at
enriching detection solutions. Signal Processing
Magazine, IEEE, 29(5):106–115, 2012.

[13] G. Dán and H. Sandberg. Stealth attacks and
protection schemes for state estimators in power
systems. In Proceedings of Smart Grid
Commnunications Conference (SmartGridComm),
October 2010.

[14] K. R. Davis, K. L. Morrow, R. Bobba, and E. Heine.
Power flow cyber attacks and perturbation-based
defense. In Proceedings of Conference on Smart Grid
Communications (SmartGridComm), pages 342–347.
IEEE, 2012.

[15] V. L. Do, L. Fillatre, and I. Nikiforov. A statistical
method for detecting cyber/physical attacks on
SCADA systems. In Proceedings of Control
Applications (CCA), pages 364–369. IEEE, 2014.

[16] E. Eyisi and X. Koutsoukos. Energy-based attack
detection in networked control systems. In Proceedings
of the Conference on High Confidence Networked
Systems (HiCoNs), pages 115–124, New York, NY,
USA, 2014. ACM.

[17] N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet
dossier. White paper, Symantec Corp., Security
Response, 2011.

[18] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and
R. Beyah. Who’s in control of your control system?
Device fingerprinting for cyber-physical systems. In
Network and Distributed System Security Symposium
(NDSS), Feb, 2016.

[19] R. M. Gerdes, C. Winstead, and K. Heaslip. CPS: an
efficiency-motivated attack against autonomous
vehicular transportation. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC),
pages 99–108. ACM, 2013.

[20] A. Giani, E. Bitar, M. Garcia, M. McQueen,
P. Khargonekar, and K. Poolla. Smart grid data
integrity attacks: characterizations and
countermeasures π. In Proceedings of Smart Grid
Communications Conference (SmartGridComm),
pages 232–237. IEEE, 2011.
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