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1 INTRODUCTION

One of the fundamentally unique properties of industrial control—when compared to general In-
formation Technology (IT) systems—is that the physical evolution of the state of a system has to
follow immutable laws of nature. For example, the physical properties of water systems (fluid dy-
namics) or the power grid (electromagnetics) can be used to create time-series models that we can
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then use to confirm that the control commands sent to the field were executed correctly and that
the information coming from sensors is consistent with the expected behavior of the system. For
example, if we open an intake valve, we should expect that the water level in the tank should rise,
otherwise, we may have a problem with the control, actuator, or the sensor; this anomaly can be
either due to an attack or a faulty device.

The idea of creating models of the normal operation of control systems to detect attacks has
been presented in an increasing number of publications appearing in security conferences in the
past couple of years. Applications include water control systems [31], state estimation in the power
grid [60, 61], boilers in power plants [111], chemical process control [13], capturing the physics of
active sensors [93], electricity consumption data from smart meters [66], video feeds from cam-
eras [19], medical devices [35], and other control systems [67].

The growing number of publications in the past couple of years clearly shows the importance
of leveraging the physical properties of control systems for security; however, we have found that
most of the papers focusing on this topic are presented independently, with little context to related
work. Therefore, research results are presented with different models, different evaluation metrics,
and different experimental scenarios. This disjoint presentation of ideas is a limitation for creating
the foundations necessary for discussing results in this field and for evaluating new proposals.

Our contributions include: (i) a systematic survey of this emerging field, presented in a unified
way and using a new taxonomy based on three main aspects: (1) attack detection, (2) attack lo-
cation, and (3) validation. Each aspect can be divided in subcategories that encompass different
properties of physics-based anomaly detection. The survey includes papers from fields that do
not usually interact, such as control theory journals, information security conferences, and power
system journals. We identify the relationships and trends in these fields to facilitate interactions
among researchers of different disciplines.

(ii) Based on our review of the work from different domains, we present an analysis of the
implicit assumptions made in papers and the trust placed on embedded devices, and a logical
detection architecture that can be used to elucidate hidden assumptions, limitations, and possible
improvements to each work.

(iii) We show that the status quo for evaluating anomaly detection proposals is not consistent
and cannot be used to build a research community in this field. We identify limitations in previous
evaluations, and we introduce a metric recently proposed that overcome some of those limitations.

The remainder of this work is organized as follows: The scope of this work is presented in
Section 1.1. In Section 2, we provide a brief introduction to control systems, and in Section 3, we
present the taxonomy we use to classify related work. We apply our taxonomy to related work
in Section 4. In Section 5, we summarize our findings from related work, and point out common
shortcomings in the literature. We propose improvements and new research efforts in Sections 6.1
and 6.2. We summarize other surveys in Section 7 and conclude our discussions in Section 8.

1.1 Scope of Our Study

There is a growing literature on the security of Cyber-Physical Systems (CPS), including the ver-
ification of control code by an embedded system before it reaches the Programmable Logic Con-
troller (PLC), Remote Terminal Unit (RTU), or Intelligent Electronic Device (IED) [69], security of
embedded devices [55], the automatic generation of malicious PLC payloads [68], security of med-
ical devices [86], vulnerability analysis of vehicles [15, 42, 49], and of automated meter readings [1,
85]. There is also ongoing research on CPS privacy including smart grids [43], vehicular location
monitoring [37], and location privacy [91]. We consider those works related, but complementary
to our work.

This article focuses on the problem of using real-time measurements of the physical world
to build indicators of attacks. Our work is motivated by false sensor measurements [60, 98] or
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false control signals like manipulating vehicle platoons [27], manipulating demand-response
systems [98], and the sabotage Stuxnet [25, 54] created by manipulating the rotation frequency of
centrifuges. The question we address is how to detect these false sensor or false control attacks.

One of the first papers to consider intrusion detection in industrial control networks was
Cheung et al. [16]. Their work articulated that network anomaly detection might be more ef-
fective in control networks where communication patterns are more regular and stable than in
traditional IT networks. Similar work has been done in smart grid networks [1, 9] and in general
CPS systems [72]; however, as Hadvziosmanovic et al. showed [30], intrusion detection systems
that fail to incorporate domain-specific knowledge and the context in which they are operating
will still perform poorly in practical scenarios. Even worse, an attacker that has obtained control of
a sensor, an actuator, or a PLC can send manipulated sensor or control values to the physical pro-
cess while complying to typical traffic patterns such as Internet Protocol (IP) addresses, protocol
specifications with finite automata or Markov models, connection logs, and so on.

In contrast to work in CPS intrusion detection that focuses on monitoring such low-level IT
observations, in this article, we systematize the recent and growing literature in computer security
conferences (e.g., CCS’15 [93], CCS’09 [60], ACSAC’13 [67], ACSAC’14 [31], ASIACCS’11 [13], and
ESORICS’14 [111]) studying how monitoring sensor values from physical observations, and control
signals sent to actuators, can be used to detect attacks. We also systematize similar results by other
fields like control theory conferences with the goal of helping security practitioners understand
recent results from control theory, and control theory practitioners understand research results
from the security community. Our selection criteria for including a paper in the survey is to identify
all the papers (that we are aware of) where the system monitors sensor and/or control signals, and
then raises an alert whenever these observations deviate from a model of the physical system.

2 BACKGROUND

We now briefly introduce control systems, common attacks, and countermeasures proposed in the
literature.

2.1 Background

A general feedback control system has four components: (1) the physical phenomena of interest
(sometimes called the “plant”), (2) sensors to observe the physical system and send a time series
yk denoting the value of the physical measurement at time k (e.g., the voltage at 3am is 120KV),
(3) based on the sensor measurements receivedyk , the controller sends control commandsuk (e.g.,
open a valve by 10%) to actuators, and (4) actuators that change the control command to an actual
physical change (the device that opens the valve).

A general security monitoring architecture for control systems that looks into the “physics” of
the system needs an anomaly detection system that receives as inputs the sensor measurements
yk from the physical system and the control commands uk sent to the physical system and then
uses them to identify any suspicious sensor or control commands is shown in Figure 1.

The idea of monitoring sensor measurements yk and control commands uk and to use them
to identify problems with sensors, actuators, or controllers is not new. In fact, this is what the
literature of fault-detection in dynamical systems has investigated for more than four decades [28,
41, 115]. Fault Detection, Isolation, and Reconfiguration (FDIR) methods are diverse and encompass
research on hardware redundancy (e.g., adding more sensors to detect faulty measurements, or
adding more controllers and decide on a majority voting control) as well as software (also known as
analytical) redundancy [41]. While fault-detection theory provides the foundations for our work,
the disadvantage of fault-detection systems is that they were designed to detect and respond to
equipment failures, random faults, and accidents, not attacks.
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Fig. 1. Anomaly detection architecture. The sensor measurements yk and the control commands uk are fed

to the anomaly detection block. Under normal operating conditions, the actuation on the plant corresponds

to the intended action by the controller: vk = uk , and the observations are correctly reported back to the

controller: yk = zk .

Fig. 2. When one or more actuation signals are compromised (e.g., the actuator itself is compromised or it

receives and accepts a control command from an untrusted entity), the actuation to the plant will be differ-

ent to the intended action by the controller: vk � uk . This false actuation will in turn affect the measured

variables of the plant zk , which in turn affect the sensor measurements reported back to the controller:

yk = zk .

Figure 2 shows an attack on the actuator, which modifies the control command send to the
plant. Note that the controller is not aware of the communication interruption. However, Figure 3
shows an attack in the sensor, which allows the attacker to deceive the controller about the real
state of the plant. In the worst case, the control device can be compromised as well, giving the
attacker potentially unlimited control on the plant to implement any outcome (see Figure 4). This
last figure also captures the threat model from a malicious control command sent from the control
center as seen in Figure 5: While the implementation might be different—one monitor is placed in
the supervisory network and the other monitor on the field communications interface—the logical
architecture—what the monitoring application sees—will be the same. In these attack schemes,
we assume that the control has a trusted detection mechanism, which can recognize unexpected
behaviors and potentially take counter measures.

The detection block in Figures 1–4 is expanded in Figure 6 to illustrate several alternative
algorithms we found in the literature. There are two blocks that are straightforward to implement:
(1) The controller block in Figure 6 is a redundant control algorithm (i.e., in addition to the
controller of Figure 1) that checks if the controller is sending the appropriate uk to the field, and
(2) The safety check block is an algorithm that checks if the predicted future state of the system
will violate a safety specification (e.g., the pressure in a tank will exceed its safety limit). The
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Fig. 3. When one or more sensor signals are compromised (e.g., the sensor itself is compromised or the

controller receives and accepts a sensor measurement from an untrusted entity), the sensor measurement

used as an input to the control algorithm will be different from the real state of the measured variables

yk � zk .

Fig. 4. When the controller is compromised, it will generate a control signal that does not satisfy the logic

of the correct control algorithm: uk � K (yk ).

Fig. 5. Attacks on Central Control or Supervisory Control Network translate on the logical model shown in

Figure 4.

different alternative detection algorithms are also summarized in Table 1. In this article, we focus
on analyzing the more challenging algorithms:

(1) Prediction (Physical Model): given sensor yk and control commands uk , a model of the
physical system will predict a future expected measurement ŷk+1.
If we only have output data (sensor measurements yk ), then regression models like AR,
ARMA, or ARIMA are a popular way to learn the correlation between observations. Using
these models, we can predict the next outcome. For example, for an Auto-Regressive (AR)
model, the prediction would be
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Fig. 6. The detection block from Figure 1, with a set of different detection algorithms. In the top, the controller

block is a redundant control (i.e., in addition to the controller of Figure 1) that checks if the control commands

are appropriate. The middle row (prediction, residual generation, and anomaly detection blocks) focuses on

looking at the sensor values and raising an alarm if they are different than what we expect/predict. The

prediction and safety check blocks focus on predicting the future state of the system, and if it violates a

safety limit, then we raise an alert.

Table 1. Detection Algorithm Alternatives Found in Literature

Features
Cur. In & Prev. Out uk ,yk−1

Prev. Sensor Observ. yk−1,yk−2, . . . ,yk−N

Prediction

Input-Output LDS
xk+1 = Axk + Bukv + ϵk

yk = Cxk + Duk + ek

Output-Only AR yk+1 =
∑k

i=k−N
αiyi + α0 + ϵk

Anomaly Detection

Stateless |rk |
?
> τ

Stateful S0 = 0. (Sk + |rk | − δ )+
?
> τ

ŷk+1 =

k∑

i=k−N

αiyi + α0, (1)

where αi are the coefficients learned through system identification and yi the last N sen-
sor measurements—where the amount of parameters to learn N can be also estimated to
prevent over-fitting of the model using tools like Akaike’s Information Criteria (AIC). It is
possible to obtain the coefficients αi , by solving an optimization problem that minimizes
the residuals (e.g., least squares) [62].
If we have inputs (control commandsuk ) and outputs (sensor measurementsyk ) available,
then we can use subspace model identification methods, producing the following model:

xk+1 = Axk + Buk + ϵk ,

yk = Cxk + Duk + ek , (2)

where A, B, C, and D are matrices modeling the dynamics of the physical system.
Most physical systems are strictly causal and then therefore usually D = 0. The control
commandsuk ∈ Rp affect the next time step of the state of the system xk ∈ Rn and sensor
measurements yk ∈ Rq are modeled as a linear combination of these hidden states. ek

and ϵk are sensor and perturbation noise, and are assumed to be a random process with
zero mean.
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Fig. 7. The detetion module from Figure 6 focusing on using anomaly detection based on the physics of the

process.

(2) Anomaly detection (Statistical Test): Given a time series of residuals rk (the difference be-
tween the received sensor measurement yk and the predicted/expected measurement ŷk ),
the anomaly detection test needs to determine when to raise an alarm. Anomaly detection
strategies that are based on residuals, can be divided into two main categories: Statelss and
Stateful.
In a Stateless test, we raise an alarm for every single significant deviation at time k , i.e.,
if |yk − ŷk | = rk ≥ τ , where τ is a threshold.
In a Stateful test, we compute an additional statistic Sk that keeps track of the historical
changes of rk (no matter how small) and generate an alert if Sk ≥ τ , i.e., if there is a
persistent deviation across multiple time steps. There are many tests that can keep track
of the historical behavior of the residual rk such as taking an average over a time-window,
an exponential weighted moving average (EWMA), or using change detection statistics
such as the non-parametric CUmulative SUM (CUSUM) statistic.
The theory behind CUSUM assumes we have a probability model for our observations rk

(the residuals in our case); this obscures the intuition behind CUSUM, so we focus on the
non-parametric CUSUM (CUSUM without probability likelihood models), which is basi-
cally a sum of the residuals. In this case, the CUSUM statistic is defined recursively as
S0 = 0 and Sk+1 = (Sk + |rk | − δ )+, where (x )+ represents max(0,x ) and δ is selected so
that the expected value of |rk | − δ < 0 under hypothesis H0 (i.e., δ prevents Sk from in-
creasing consistently under normal operation). An alert is generated whenever the statis-
tic is greater than a previously defined threshold Sk > τ and the test is restarted with
Sk+1 = 0.

By focusing on these algorithms our detection block can be simplified as shown in Figure 7.

2.2 State Estimation

Before we start our survey, we also need some preliminaries in what state estimation is. Whenever
the sensor measurements yk do not observe all the variables of interest from the physical process,
we can use state estimation to obtain an estimate x̂k of the real state of the system xk at time k (if
we have a model of the system).

Recall Equation (2) gives us the relationship between the observed sensor measurementsyk and
the hidden state xk . The naive approach would assume the noise ek is zero and then solve for
xk : xk = C

−1 (yk − Duk ); however, for most practical cases this is not possible as the matrix C is
not invertible, and we need to account for the variance of the noise. The exact solution for this
case goes beyond the scope of this article, but readers interested in finding out how to estimate
the state of a dynamical system are encouraged to read about Luenberger observers [96] and the
Kalman filter [112], which are used to dynamically estimate the system’s states without or with
noise, respectively.

State estimates can then be used for the control logic, for prediction (and therefore for bad data
detection), and for safety checks, as in Figure 8.
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Fig. 8. Whenever the sensor measurements yk do not observe all the variables of interest from the physical

process, we can use state estimation to obtain an estimate x̂k of the real state of the system xk at time k (if

we have a model of the system). State estimates can then be used for the control logic, for prediction (and

therefore for bad data detection), and for safety checks.

In addition to the literature on state estimation in the power grid [61], there has been work
studying the role of state estimation for the security of other cyber-physical systems. For example,
Chong et al. introduce secure state estimation for a generic control system described in Equation (2)
where stateful detection strategies are used to search for a subset of sensors that are not under
attack to generate accurate estimations. This approach started a novel line of research that helps
to mitigate the impact of attacks for those cases where estimation is a fundamental part of the
control and decision making (e.g., observer based control).

3 TAXONOMY

We now present our new taxonomy, which attempts to identify the key characteristics for the
literature on physics-based attack-detection. Figure 9 illustrates our taxonomy, and Table 2 sum-
marizes the application of our taxonomy to the related literature (done in the next section). In
particular, our taxonomy has the following characteristics:

(1) Attack Detection: The methods proposed by researchers to detect attacks. Attack detec-
tion is divided in two:
(a) Prediction: The model of used by the researchers to predict the state of the system.
(b) Detection Statistic: How the anomaly is scored, and the conditions for raising an

alert.
(2) Attack Location: The specific device that launches the attack; e.g., the sensor, controller,

or actuator.
(3) Validation: How researchers validate their attack-detection algorithms. This is further

divided in two points:
(a) Metrics: How researchers measure the effectiveness of the detection algorithm.
(b) Implementation: How the attack-detection algorithms are implemented, e.g., re-

searchers can do simulations, use real-world systems, or obtain data from operators.

3.1 Attack Detection

As we mention above, physics-based anomaly detection mechanisms rely on an adequate predic-
tion of the system behavior. We now describe the options for modeling the physical system and
the ways to determine whether or not to raise an alarm.
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Fig. 9. Our proposed taxonomy focuses on three components: Attack Detection (Section 3.1), Attack Location

(Section 3.2), and Validation (Section 3.3).

3.1.1 Prediction Model: LDS or AR. The model of how a physical system behaves can be devel-
oped from physical equations (Newton’s laws, fluid dynamics, or electromagnetic laws) or it can be
learned from observations through a technique called system identification [5, 63]. In system iden-
tification one often has to use either Auto-Regressive Moving Average with eXogenous inputs
(ARMAX) or linear state-space models. Two popular models used by the papers we survey are
Auto-Regressive (AR) models (e.g., used by Hadziosmanovic et al. [31]) and Linear Dynamical

State-Space (LDS) models (e.g., used by PyCRA [93]). AR models are a subset of ARMAX models
but without modeling external inputs or the average error and LDS are a subset of state space
models.

To make a prediction, we need yk (and uk for LDS) to obtain a ŷk+1. For the particular case of
LDS, a state estimator uses yk ,uk to obtain x̂k+1, and then compute ŷk+1 = Cx̂k+1 (if D is not zero,
then we also need uk+1). Some communities adopt models that employ the observation equation
from Equation (2) without the dynamic state equation. In this particular case, it is possible to
assume that the at each sampling instant, the system has already reached some (quasi)stable state.
We refer to this special case of LDS as Static Linear State-space (SLS) model.

3.1.2 Detection Statistic: Stateless or Stateful. Based on the observed sensor or control signals
up to time k , we can use models of the physical system (e.g., AR or LDS) to predict the expected
observations ŷk+1 (note that ŷk+1 can be a vector representing multiple sensors at time k + 1). The
difference rk between the observations predicted by our model ŷk+1 and the sensor measurements
received from the fieldyk+1 is usually called a residual. If the observations we get from the sensors
yk are significantly different from the ones we expect (i.e., if the residual is large), then we can
generate an alert. To measure that difference, we identify two types of detection statistics: stateless,
which are evaluated at each time instant, or stateful, which keep track of historical changes.
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3.2 Attack Location

To evaluate attack detection schemes, it is important to explicitly state which components in the
control loop need to be trusted to correctly detect attacks. We found in the literature that some-
times detection mechanisms are proposed without a clear definition of what the attacker can do
and cannot do. In particular, one of the discussions we have later in the article is that attacks can
bypass attack-detection methods depending on the specific location from where they are launched.
In particular, we focus on attackers that can compromise sensors, actuators, or controllers.

3.3 Validation

We classify the way attack-detection proposals are validated in two main groups: (i) implementa-
tion and (ii) evaluation metrics.

3.3.1 Implementation. The proposed detection techniques are typically implemented using dif-
ferent types of experimental scenarios to evaluate their efficacy and illustrate how the physical
system is affected by cyber attacks. We found in the literature three types of experimental set-
tings: (1) simulations, (2) data from real-world systems (e.g., data captured from a power utility),
and (3) real-world testbeds (real-world systems that are not operational, but are used solely for ex-
perimentation). Each of them possesses some advantages but also some drawbacks. For instance,
with simulations, it is possible to test the impact of attacks without any safety hazard, but doing
so ignores many of the real-world problems practitioners encounter. However, deploying attacks
in a testbed enables a more realistic analysis of vulnerabilities of the system, but it comes with the
risks of damaging expensive equipment or even harming people.

3.3.2 Evaluation Metrics. The evaluation metric is used to determine the effectiveness of the
proposed detection scheme. Ideally, the metric should allow for a fair comparison of different
schemes that are targeting the same adversarial model for comparable settings. Common eval-
uation metrics are the number of false alerts and the probability of detecting attacks. A parametric
curve illustrating the trade-off of these two quantities is the Receiver Operating Characteristic
(ROC) curve. A specific combination of these two metrics into a single quantity is the accuracy

(correct classification) of the anomaly detector.
We also found in the literature other evaluation metrics, such as the impact that the attack is

able to cause in the physical process (e.g., deviation from an operation point), the evolution of
the detection statistic over time, and the time of detection, which quantifies how long it takes to
detect an attack right after it is launched. This latter metric is very important, because the real-
time safety-criticality of most control systems. It does not matter if an attack-detection algorithm
can detect an attack if by the time it is detected

In the next section, we apply our taxonomy to a survey of the literature on physics-based attack
detection for CPS.

4 SURVEY OF PREVIOUS WORK

The term Cyber-Physical Systems (CPS) was coined over a decade ago as an attempt to unify
the emerging application of embedded computer and communication technologies to a variety of
physical domains, including aerospace, automotive, chemical production, civil infrastructure, en-
ergy, healthcare, manufacturing, materials, and transportation. The goal of CPS research is to re-
veal cross-cutting fundamental scientific and engineering principles that underpin the integration
of cyber and physical elements across all application sectors. As such, research communities from
established different backgrounds ranging from control theory, power systems, and cyber-security

have tried to provide their own solutions to physics-based attack detection.
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In the cross-cutting spirit of CPS, we divide our survey based on how physics-based attack detec-
tion is approached by different disciplines: (1) control theory (articles published in control theory
conferences, or journals), (2) power systems (articles published in power systems conferences, or
journals), and (3) cyber-security (articles published in security conferences, or journals). Our goal
is to identify what are the trends and common points when researchers from one field (e.g., control
theory) study CPS security and then see how it compares with other fields (e.g., cyber-security).

We assigned workshops to the venue that the main conference is associated with. We also as-
signed conferences associated with Cyber-Physical Systems Week (CPSWeek) to control confer-
ences because of the overlap of attendees to CPSWeek coming with control theory background.

4.1 Control Theory

There is a significant body of work in attack detection from the control theory community [7, 8,
38, 53, 70], which does not focus on a specific domain. While the treatment of the topic is highly
mathematical (a recent special issue of the IEEE Control Systems Magazine provides an accessible
introduction to the topic [39]), we attempt to extract the intuition behind key approaches to see if
they can be useful for the computer security community.

Most control theory papers we reviewed look at models of the physical system satisfying Equa-
tion (2), because that model has proven to be very powerful for most practical purposes. In addition,
several of these papers assumed a stateless detection. We think this bias towards the stateless test
by the control theory community stems from the fact that the stateless test allows researchers
to prove theorems and derive clean mathematical results. In contrast, providing such thorough
theoretical analysis for stateful tests (e.g., CUSUM) can become intractable for realistic systems.
We believe that this focus on strong analytical results prevents the use of stateful tests that effec-
tively perform better in many practical cases. Most of the stateful approaches that can be found
in control theory papers focus on windowed χ 2 [76], and combinatorial optimization approaches
[71]. For instance, Murguia et al. [78] have proposed an extensive analysis of the non-parametric
CUSUM to guarantee an adequate tuning that depends on the system dynamics and its stochastic
properties.

In addition to these trends, we identified several novel ideas from the control theory community;
we summarize them below as (1) secure state estimation, (2) zero-dynamics attacks, (3) combined
cyber and physical attacks, (4) active monitoring, and (5) energy-based methods.

Secure State Estimation. One of the main areas of research in the control theory community
is to find efficiently the subset of sensors that are sending false information [17, 92]. Attack De-

tection: The system models satisfy Equation (2). The main idea behind these papers consists on
solving a combinatorial optimization problem to find a subset of sensors whose elements are not

under attack, to generate adequate state estimations. When multiple sensors are under attack, this
problem is shown to be NP-hard (combinatorial in the number of sensors), so the goal of research
papers is to find efficient algorithms under a variety of assumptions. Recently, Shoukry et al. [92]
proposed a search algorithm based on Satisfiability Modulo Theory (SMT) to speed up the search
of possible sensors sets; this research has been extended for systems subject to random noise [71].
Attack Location: A subset of sensors can be compromised. In particular, it was found that the total
number of sensors used to monitor the process has to be at least twice the number of sensors un-
der attack. From this discussion, we can infer that the authors assumed controller and actuators
to be trusted. Another paper considering secure state estimation where the attacks are located in
the control signal is done by Yong et al. [120]. Validation: The theoretical results are tested using
simulations where the accuracy of the estimation and searching times are compared for different
searching methods to verify the effectiveness of SMT.
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These papers are also among the few that discuss the time-to-detect metric and offer solutions
trying to minimize it. In our discussion section, we will return to the need to have more papers
discussing the time to detect an attack.

Zero-dynamics Attacks. These attacks are interesting, because they show that even without
compromising sensors, attackers can mislead control systems into thinking they are at a different
state. The attacks require the attacker to compromise the actuators, that the anomaly detection
system monitors the legitimate control signal uk and the legitimate sensor signal yk , and a plant
vulnerable to these attacks.

One of the fundamental properties control engineers ask about Equation (2) is whether or not the
system is Observable [96]. If it is observable, then we know that we can obtain a good state estimate
x̂k given the history of previous control inputs uk and sensor measurements yk . Most practical
systems are observable or are designed to be observable. Now, if we assume an observable system,
then we can hypothesize that the only way to fool a system into thinking it is at a false state, is by

compromising the sensors and sending false sensor readings. Zero-dynamics attacks are an example
that this hypothesis is false [83, 102, 103].

Zero-dynamics attacks require attackers that inject fake signals in sensors or actuators, and
modify “hidden” (or unobservable) states. For instance, in Figure 2 the anomaly detector observes
a validuk and a validyk , but it does not observe the compromisedvk . Not all systems are vulnerable
to these attacks, but certain systems like the quadruple tank process [44] can be (depending on the
specific parameters).

Though zero-dynamics attacks are interesting from a theoretical point of view, most practical
systems will not be vulnerable to these attacks (although it is always good to check these condi-
tions). First, if the sensors monitor all variables of interest, we will not need to state estimation
(although this might not be possible in a large-scale control system with thousands of states);
second, even if the system is vulnerable to zero-dynamics attacks, the attacker has to follow a
specific control action from which it cannot deviate (so the attacker will have problems achieving
a particular goal—e.g., move the system to a particular state), and finally, if the system is mini-
mum phase, the attacker might not be able to destabilize the system. In addition, there are several
recommendations on how to design a control system to prevent zero-dynamic attacks [103].

Combined Use of Cyber- and Physical Attacks. Control theory papers have also considered
the interplay between physical attacks and cyber-attacks. Attack location: In a set of papers by
Amin et al. [3, 4], the attacker launches physical attacks to the system (physically stealing water
from water distribution systems), while at the same time it launches a cyber-attack (compromised
sensors send false data masking the effects of the physical attack). We did not consider physical
attacks originally, but we then realized that the actuation attacks of Figure 2 account for physical
attack, as it is equivalent to the attacker inserting its own actuators, and therefore the real actuation
signalvk will be different from the intended control command uk . Attack Detection: Authors focus
on LDS models obtained from an exhaustive analysis of hydrodynamic properties. They propose
the use of unknown input observers and stateless detection to identify the location of a possible
attacks; however, the bottom line is that if the attackers control enough actuation and sensor
measurements, there is nothing the detector can do as the compromised sensors can always send
false data to make the detector believe the system is in the state the control wanted it to go. These
covert attacks have been characterized for linear [94] and nonlinear systems [95]. Validation: The
results are validated in a real water distribution network plant for different case studies.

GPS Spoofing. Kerns et al. [45] consider how Global Positioning System (GPS) spoofing attacks
can take control over unmanned aircrafts. Attack Location: The spoofer is able to generate a counter-

feit GPS signal and sends it to the GPS antenna of the aircraft. The fake signal is designed to replace
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the real GPS reading with a fake position. Attack Detection: They use an LDS as a model of the
physical system, and then use a stateless residual (also referred to as innovations) test to detect
attacks. Validation: They test different attacks through simulation and also by using an aircraft
Hornet Mini UAV, which is a mini helicopter of 4.5Kg. They show two attacks, one where the at-
tacker is detected, and another one where the attacker manages to keep all the residuals below the
threshold while still changing the position of the aircraft.

Active Monitoring. Most physics-based anomaly detection algorithms are passive; i.e., they do
not affect the system they are observing. In contrast, active monitoring changes the physical sys-
tem by sending unpredictable control commands and then verifying that the sensor responds as
expected. Attack Detection: The work of Mo et al. [74–76] considers embedding a watermark in
the control signal, by injecting random noise from a known distribution. This is useful for systems
that remain constant for long periods of time (if they are in a steady state) and to see if the control
action has any effect, the operator needs to send a random signal to the system. They use a time-
window stateful anomaly detection statistic. Attack Location: This approach can detect sensor or
actuator attacks. Validation: results are evaluated using simulations and TPR,FPR.

The idea of active monitoring has also been proposed in other domains [75, 93, 106, 107], as we
will discuss later in the article.

Energy-based Attack Detection. Finally, another detection mechanism using control theoretic
components was proposed by Eyisi and Koutsoukos [24]. Attack detection: The main idea is that
the energy properties of a physical system can be used to detect errors or attacks. Unlike observer-
based detection (used by the majority of control papers), their work uses concepts of energy or
passivity, which is a property of systems that consume but do not produce net energy. In other
words, the system is passive if it dissipates more energy than it generates. To use this idea for
detecting attacks, the monitor function estimates the supplied energy (by control commands) and
compares it to the energy dissipated and the energy stored in the system (which depend on the dy-
namics of the system). While the idea is novel and unique, it is not clear why this approach might
be better than traditional residual-based approaches, in particular given that any attack imperson-
ating a passive device would be undetected, and in addition, the designer needs more information.
To construct an energy model, a designer needs access to inputs and outputs, the model of the
system in state space (as in Equation (2)), and functions that describe the energy dissipation of a
system in function of the stored energy (energy function) and the power supply (supply function).
Attack location: It is assumed that sensors are under attack and that the controller and actuator
are trusted, but their results can be easily extended to other attack scenarios. Validation: The vali-
dation is conducted using simulation results that illustrate the impact of the attack in the system
states and how the energy changes can help to indicate whether or not an attack is present.

4.2 Power Systems

The area of power systems has also been the subject of intense study due to the criticality
of the power grid. One of the most active areas of research by the power systems community
is the problem of bad data detection in state estimation. Interestingly enough, the first paper on
this research topic was published in a cyber-security conference [60] and was later extended in a
cyber-security journal [61]; however, because this paper motivated several researchers with power
systems background to continue this line of research, we are including it along with the other
power systems papers.

Attacks on Bad Data Detection. One of the most popular lines of work in the power systems
community is the study of false-data injection attacks against state estimation in the power grid.
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In the power grid, operators need to estimate the phase angles xk from the measured power flow
yk in the transmission grid. These bad data detection algorithms were meant to detect random
sensor faults, not strategic attacks, and as Liu et al. [60, 61] showed, it is possible for an attacker
to create false sensor signals that will not raise an alarm (experimental validation in software used
by the energy sector was later confirmed [101]). Attack Detection: It is known that the measured
power flow yk = h(xk ) + ek is a nonlinear noisy measurement of the state of the system x and an
unknown quantity ek called the measurement error. Liu et al. considered the linear model where
yk = Cxk + ek , therefore this model of the physical system is the sensor measurement SLS model
described by Equation (2), where the matrix D is zero and where the dynamic state equation is not
specified. The detection mechanism they consider is a stateless anomaly detection test, where the
residual is rk = yk −Cx̂k , the state estimate is defined as x̂k = (CTW −1C )−1CTW −1yk , andW is the
covariance matrix of the measurement noise ek . Note that because rk is a vector, the metric | · | is a
vector distance metric, rather than the absolute value. This test is also illustrated in the middle row
of Figure 8. Attack Location: The sensor data is manipulated, and cannot be trusted. The goal of
the attacker is to create false sensor measurements such that |rk | < τ . Validation: The paper uses
a metric that focuses on how hard it is for the adversary to find attacks such that |rk | < τ . The
results are validated using simulation results.

There has been a significant amount of follow up research focusing on false data injection
for state estimation in the power grid, including the work of Dán and Sandberg [21], who study
the problem of identifying the best k sensors to protect to minimize the impact of attacks (they
assume the attacker cannot compromise these sensors). Kosut et al. [50] consider attackers trying
to minimize the error introduced in the estimate, and defenders with a new detection algorithm
that attempts to detect false data injection attacks. Liang et al. [56] consider the nonlinear obser-
vation model yk = h(xk ) + ek . Further work includes [10, 29, 46, 84, 90, 100, 108].

Automatic Generation Control. While attacks to state estimation can be dangerous, even more
catastrophic to the power grid would be an attack against the Automatic Generation Control (AGC)
signal, as this signal controls the power generation of the bulk power grid. An incorrect AGC signal
can cause large transmission systems disconnecting from each other and cause severe blackouts.
To compute the AGC signal to be sent to generators, control centers in the power grid send Area
Control Error (ACE) signals to ramp up or ramp down generation based on the state of the grid.
Sridhar and Govindarasu [97] were one of the first to consider the case when an ACE signal that
cannot be trusted. For Attack Detection, they use a historical model of how real-time load forecast
affects ACE. The ACE computed by the control center (ACER ) and the one computed from the fore-
cast (ACEF ) are then compared to compute the residual. They add the residuals for a time window
and then raise an alarm if it exceeds a threshold. Attack Location: The load forecast is trusted but
the control ACE signal is not, so the attacker either compromises a machine computing the ACE
signal or a control center. For Validation, the proposed approach is implemented using simulations,
and they use the false positive and false negative detection rates as metrics of performance.

Active Monitoring. Similar to the active monitoring papers we discussed earlier in the article,
the works of Morrow et al. [77] and Davis et al. [22] consider active monitoring, for power systems.
Attack location: Adversaries are able to compromise a subset of sensor readings and can design at-
tacks that bypass the anomaly detection strategy. Anomaly Detection: The focus is on static linear
models of the flow equations of the power grid to generate estimations that are used by an stateless
anomaly detection algorithm. In particular, the proposed active monitoring strategy changes ran-
domly the topology of the power grid to increase the effort of an adversary that wants to remain
undetected, because this reconfiguration will change the state of the system and if the adversary
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does not change attack appropriately, then it will be detected. Validation: Different benchmarks
were simulated to verify the proposed strategy.

While the idea of perturbing the system to reveal attackers that do not adapt to these pertur-
bations is intuitively appealing, it also comes with a big operational cost to power systems: the
deviation of a system from an ideal operational state just to test if the sensors have been compro-
mised or not might not sound very appealing to asset owners whose livelihood depends on the
optimal operation of a system. However, there is another way to look at this idea: if the control
signal uk is already highly variable (e.g., in the control of frequency generators in the power grid
who need to react to constant changes in the power demand of consumers), then the system might
already be intrinsically better suited to detect attacks via passive monitoring.

4.3 Cyber-Security

The cyber-security community is also very active in the physics-based attack detection space.
While the control theory and power systems communities tend to work at the conceptual level, the
cyber-security community has focused on the details and complexities of implementing attack-
detection in practice.

Real-world Modbus-based Detection. One of the first papers to analyze network data from
a real-world industrial system was the work of Hadziosmanovic et al. [31]. In particular, they
showed how to use Modbus (an industrial protocol) traces from a real-world operational system
to detect attacks by monitoring the state variables of the system, including: constants, attribute
data, and continuous data. We focus on their analysis of continuous data, because this research
is a motivation for our own experiments in this article. Attack Detection: To model the behavior
of continuous sensor observations yk like the water level in a tank or the water pressure in a
pipe, the authors use an AR model as we described in Equation (1). This corresponds to models
of individual signals, and as we will show in our experiments, if we can create models that show
the correlation of multiple variables, then we can obtain better attack detection algorithms. In
fact, that was an observation made by the authors, as they found that multiple variables exhibit
similar (even identical) behavior. The detection mechanism raises an alert if (1) the measurement
yk reaches outside of specified limits (this is equivalent to the Safety Check box in Figure 6) or
(2) yk produces a deviation in the prediction ŷk of the autoregressive model (noting that rk =

yk − ŷk ), this is the stateless statistical test from Figure 6. Attack Location: It is not clear where in
the control architecture the real-world data trace was collected. Because deploying a large-scale
collection of a variety of devices in a control network is easier at the supervisory control network,
it is likely that the real-world traffic monitors data exchanged between the control centers and the
PLCs. In this case the PLC must be trusted, and therefore the adversary must attack the actuators
or the sensors. Validation: The paper focuses on understanding how accurately their AR system
models the real-world system and identifying the cases where it fails. They mention that they are
more interested in understanding the model fidelity rather than in specific true-/false-alarm rates,
and we agree with them, because measuring the true positive rate would be an artificial metric.
Understanding the model fidelity is implicitly looking at the potential of false alarms, because
deviations between predictions and observations during normal operations are indicators of false
alarms. While this is a good approach for the exploratory data analysis done in the paper, it might
be misunderstood by future proposals. After all, the rule never raise an alert will have zero false
alarms (but it will never detect any attack). We discuss this further in Section 5. Authors implement
their proposed strategy using real data from a testbed.

State Relation-based Intrusion Detection (SRID). Similar to the work on secure state estima-
tion, SRID [111] attempts to detect attacks and then find the root cause of the attack in an industrial
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control system. SRID is an outlier in our survey; despite a growing literature that follow similar
approaches for the topic of using the physics of CPS to detect attacks, SRID proposes system identi-
fication, and bad data detection tests that are unique. Attack Detection: Instead of using a traditional
and well-understood system identification approach to learn a model of the boiler simulator they
study, they propose a set of heuristics they name feedback correlations and forward correlations;
however, we were not able to find a good justification as to why these heuristics are needed, or
why they are better than traditional system identification methods. We recommend that for any
future work, if the authors propose a new system identification tool (previously untested), they
should use a traditional tool to test as a baseline approach. One of the goals of SRID is to identify
the location of an attack; but we believe that if we know all the control loops in their boiler simula-
tion, we can create models for each of them and identify the root cause using traditional methods;
however, the paper does not mention where other researchers can find the boiler simulator SRID
used in the experiments, so we cannot compare our methods to theirs. However, SRID does not
specify if they use control and sensor measurements for their anomaly detection, but from the de-
scription it appears they use only sensor measurements. SRID proposes a new bad data detection
based on alternation vectors, which basically tracks the history of measured variables going up
or down. If this time series is not an allowable trend (not previously seen), then the detection test
generates an alert. It is not clear why this heuristic can perform better than the traditional resid-
ual generation approach. Attack Location: The sensors cannot be trusted, but the attacker sends
arbitrary data that falls within the sensor’s valid range. Therefore, this attacker is not strategic and
it behaves exactly as random faults. It is not clear therefore how their evaluation will differ when-
ever there is a sensor fault (within the valid range) or the attacker they propose. Validation: SRID
measures the successful attack detection rate and the false-alarm rate using simulation results.

Attack-Detection and Response. Cardenas et al. [13] consider a chemical industrial control sys-
tem. Attack Detection: The authors approximate the nonlinear dynamics of the chemical system
with an input/output linear system, as we defined in Equation (2). Therefore this model captures
the correlations among multiple different observations yk (with the matrix C) but also the cor-
relation between input uk and output yk and is therefore a model that can match the fidelity of
observations very closely. The authors use the linear system to predict ŷk given the previous input
uk−1 and the previous measurementyk−1 and then test whether or not the prediction is close to the
observed measurement rk = yk − ŷk . They raise an alert if the CUSUM statistic (the stateful test of
Figure 6) is higher than a threshold. Attack Location: One or more sensors are compromised, and
cannot be trusted. The goal of the adversary is to violate the safety of the system: i.e., an attacker
that wants to raise the pressure level in the tank above 3,000kPa and at the same time remain un-
detected by the test. The actuators and the control logic are assumed to be trusted. Validation: The
paper proposes a control reconfiguration whenever an attack is detected, in particular a switch to
open-loop control, meaning that the control algorithm will ignore sensor measurements and will
attempt to estimate the state of the system based only on the expected consequences of its own
control commands. As a result, instead of measuring the false-alarm rate, the authors measure the
impact of a reconfiguration triggered by a false alarm on the safety of the system—in other words,
a false alarm must never drive the system to an unsafe state (a pressure inside the tank greater
than 3,000kPa). To evaluate the security of the detection algorithm, the authors also test to see if
an attacker that wants to remain undetected can drive the pressure inside the tank above 3,000kPa.
All the results were tested via simulation.

Clustering. Another approach to detect attacks in process control systems is to learn unsuper-
vised clustering models containing the pair-wise relationship between variables of a process. At-

tack Detection: Using these models it is possible to identify anomalies that do not fit the clusters
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[47, 52]. Attak Location: They consider sensor attacks. Validation: The authors used the Tennessee
Eastman process simulation to validate the proposed approach for several types of attacks.

These approaches are non-parametric, which have the advantage of creating models of the phys-
ical process without a priori knowledge of the physics of the process; however, a non-parametric
approach does not have the fidelity to the real physics of the system as an LDS or AR model will
have, in particular when modeling the time-evolution of the system or the evolution outside of a
steady state.

Detecting Safety Violations and Response. Another paper that proposes control reconfigura-
tion is McLaughlin [67]. This paper tackles the problem of how to verify that control signals uk

will not drive the system to an unsafe state, and if they do, to modify the control signal and pro-
duce a reconfiguration control that will prevent the system from reaching an unsafe state. As such,
this is one of the few papers that considers a reconfiguration option when an attack (or possible
safety violation) is detected. The proposed approach, C2, mediates all control signals uk sent by
operators and embedded controllers to the physical system. Attack Detection: C2 considers multi-
ple systems with discrete states and formal specifications, as such this approach is better suited
for systems where safety is specified as logical control actions instead of systems with continuous
states (where we would need to use system identification to learn their dynamics). This approach
is most similar to the attack on control signals in Figure 2. However, their focus is not to detect if
uk � K (yk ), but to check if uk will violate a safety condition of the control signal or not. As such,
their approach is most similar to using the Safety Check block we introduced in Figure 6. Attack

Location: McLaughlin mentions that “the approach can prevent any unsafe device behavior caused
by a false data injection attack, but it cannot detect forged sensor data,” and later in the paper
we find “C2 mitigates all control channel attacks against devices, and only requires trust in pro-
cess engineers and physical sensors.” This is a contradiction, and the correct statement to satisfy
the security of their model is the latter. As such C2 assumes trusted sensors and trusted actuation
devices (specifically stating trusted actuators is a missing trust assumption in their model). C2 is
related to traditional safety systems for control like safety interlocks, and not necessarily mali-
cious attacks as there does not seem to be a difference between preventing an unsafe accidental
action to an unsafe malicious action. Validation: There are three main properties that C2 attempts
to hold: (1) safety (the approach must not introduce new unsafe behaviors, i.e., when operations
are denied the “automated” control over the plant should not lead the plant to an unsafe state),
(2) security (mediation guarantees should hold under all attacks allowed by the threat model), and
(3) performance (control systems must meet real time deadlines while imposing minimal overhead).
C2 was tested using simulations and real PLCs for six different case studies.

Detecting Malicious Control Commands. There is other related work in trying to understand
consequences of potentially malicious control commands from the control center. Their goal is to
understand safe sequences of commands and commands that might create problems to the system.
Attack Location: These attacks correspond (logically) to the attack on control signals in Figure 2 [51,
58, 82]. Attack Detection: Lin et al. [58] use contingency analysis to predict the consequences of
control commands, and Mitra et al. [73] combine the dynamics of the system with discrete tran-
sitions (finite state machines) such as interruptions. Using set theory, they show it is possible to
determine the set of safe states, the set of reachable states, and invariant sets; therefore, if there
is not an input that can drive the states out of the safety set, the model is safe. Finding these sets
requires some relaxations and a good knowledge of the behavior and limitations of the system. Fi-
nally, attacks are detected using a stateless IDS, that checks the validity of the control commands.
Validation: The approach is validated by using simulations.
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Active Monitoring for Sensors. Active monitoring has also been used to verify the freshness
and authenticity of a variety of sensors [93] and video cameras [106]. Attack Detection: PyCRA [93]
uses an LDS model to predict the response of sensors and to compute the residual rk , which is then
passed to a stateful χ 2 anomaly detection statistic. The attacker in PyCRA has a physical actuator
to respond to the active challenge. Validation: The evaluation of the proposal focuses on computing
the trade-off between false alarms and probability of detection (i.e., ROC curves).

Another active monitoring approach suggests visual challenges [106, 107] to detect attacks
against video cameras. Anomaly Detection: In particular, a trusted verifier sends a visual challenge
such as a passphrase, Quick Response (QR) code, or random tweets to a display that is part of
the visual field of the camera, and if the visual challenge is detected in the video relayed by the
camera, the footage is deemed trustworthy. The paper considers an adversary model that knows
all the details of the system and tries to forge video footage after capturing the visual challenge.
The authors use the CUSUM statistic to keep track of decoding errors. Validation: Using real data
from a test-bed, the authors evaluated several visual challenges and investigated their advantages.

Electricity Theft. There is also work on the problem of electricity theft detection by monitor-
ing real traces from electricity consumption from deployed smart meters [66]. Attack detection: To
model the electricity consumption the authors use ARMA models, which are output-only mod-
els similar to those in Equation (1). Since their detection is not done online (similar to the video
forensics case), the detection test is not stateless but stateful (an average of the residuals), where
the detector can collect a lot of data and is not in a rush to make a quick decision. Attack location:

The attacker has compromised one sensor (the smart meter at their home) and sends false elec-
tricity consumption. Validation: The evaluation metric is the largest amount of electricity that the
attacker can steal without being detected and the trade-off between the false positive rate and the
cost of an attack. Authors used a real-data set to validate their results.

Platooning. Sajjad et al. [88] consider the control of cars in automated platoons. Attack Detection:

They use LDS to model the physical system and then use a stateful test with a fixed window of
time to process the residuals. Attack Location: Authors consider attacks in sensors and actuators.
Validation: To evaluate their system they show via simulation that when attacks are detected, the
cars in the platoon can take evasive maneuvers to avoid collisions.

4.4 Miscellaneous Domains

There are several other papers leveraging physics-based attack detection that have been published
in conferences or journals not traditionally associated (or focused) on control theory, power sys-
tems, or cyber security. We now summarize some of these results.

Video Forensics. Conotter et al. [19] propose to look at the geometry and physics of free-falling
projectiles to check if the motions of a moving object in videos are realistic or fake. Attack detec-

tion: The proposed algorithm to detect implausible trajectories of objects follows: First, describe a
simplified 3D physical model of the expected trajectory and a simplified 2D imaging model. Then,
determine if the image of the trajectory of a projectile motion is consistent with the physical model.
A contribution of the paper is to show how a 3D model can be directly created from the 2D video
footage. Once a 3D model is created, it can be used to check against the physical model to detect
any deviations. The attacker is someone who uses sophisticated video editing tools to manipu-
late a video of, for example, a person throwing a basketball to create a perfect, spectacular shot.
In this case, the forger has access to the 2D video footage and can manipulate, re-process it. The
paper does not focus on how the forgery is done but assumes that a video can be either fake or
real, and the goal of the proposed approach is to determine the authenticity of each video. How-
ever, note that only naive attackers were considered here. If the forger is aware of such detection
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Fig. 10. Communication between actuators or sensors to PLCs is achieved by field communication protocols.

Control between PLCs or between PLC and a central control server is achieved with supervisory industrial

protocols. This network is part of a testbed we use for our experiments.

mechanism, then it will try to manipulate the 2D image to conform to the real 3D model. Valida-

tion: The evaluation metric computes the mean error between the pair of representations of the
projectile motion using Euclidean distance; so it is a stateful test. The reason for using this test
(and not change detection statistics) stems from the fact that forgery detection does not need to
be done in real-time, but it is mostly done after the fact.

Medical Devices. Detection of attacks to medical devices is also a growing interest [35, 36]. Attack

location: Hei et al. [35] study overdose attacks/accidents for insulin pumps. Attack Detection: They
employ a supervised learning approach to learn normal patient infusion patterns with dosage
amount, rate, and time of infusion. The model of their physical system is done through a Support
Vector Regression (SVR). Again, similar to all the papers reviewed in this miscellaneous section
focusing on off-line anomaly detection, the detection test is an average of the residuals. More
specifically, they use the Mean Squared Error measuring the difference between the predicted and
the real value before raising an alert. Validation: They validated the impact of the attacks and the
effectiveness of their detection mechanism using real applications.

Critical State Analysis. Carcano et al. [12] propose a safety monitoring system similar toC2 but
without mediating control commands (and using the control commanduk to predict the next state
ŷk to see if it violates a safety condition) or proposing any reconfiguration when a safety issue is
detected. The proposed concept is to monitor the state of a system and raise alerts whenever it
is in a critical state (or approaching a critical state). Attack Detection: the approach measures the
distance of sensor measurementsyk to a critical stateyc : d (yk ,y

c ). They do not learn the dynamics
of the physical system and this can have serious consequences as, for example, the power grid can
change the distance to a critical state almost immediately, whereas chemical processes such as
growing bacteria in anaerobic reactors can take days to drive a system state to an unsafe region.
An alert is risen whenever the system is in a critical state and also log the packets that led the
system to that state for forensic purposes. They only monitor yk not uk , which as we will show,
is a suboptimal approach. Attack Location: Because the authors monitor Modbus commands, it is
likely that their sniffer is installed at the Supervisory Control Network of Figure 10, and as we will
show, this assumes a trusted PLC. They also assume trusted sensors. The simulated attacks consist
of legitimate control commands that drive the system to unsafe states; as such, these attacks are
easy to detect. Validation: they monitor the number of false alarms and the true positive rate. The
detection algorithm can have missed positives (when an attack happened and was not detected)
because of packet drops, but it is not clear what a false alarm is in their case (it appears to be a
critical state caused by legitimate control actions).
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Table 2. Summary of Taxonomy of Related Work on Physics-based Attack Detection in Control Systems

5 DISCUSSION

We apply our taxonomy to previous work in Table 2. The rows of the table correspond to our
taxonomy, and the columns of the table correspond to main emphasis of the publication venue.
We make the following observations: (1) the vast majority of prior work uses stateless tests;
(2) most control and power grid venues use LDS (or their static counterpart SLS) to model the
physical system, while computer security venues tend to use a variety of models; several of them
are non-standard and difficult to replicate by other researchers; (3) there is no consistent metric
used to evaluate proposed attack-detection algorithms; (4) most papers focus on describing attacks
to specific devices (i.e., devices that are not trusted) but they do not provide a fine-grain trust model
that can be used to described what can be detected and what cannot be detected when the adver-
sary is in control of different devices; and (5) no previous work has validated their work with all
three options: simulations, testbeds, and real-world data.

5.1 General Shortcomings

(1) Lack of Trust Models. Most papers do not describe their trust models with enough pre-
cision. Information exchanged between field devices (sensor to controller and controller
to actuator in Figure 1) is communicated through a different channel from information
that is exchanged between controllers or between controller and the supervisory con-
trol center. Papers that monitor network packets in the supervisory control network [31]
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implicitly assume that the controller (PLC) they monitor is trusted, otherwise the PLC
could fabricate false packets that the monitor expects to see, while at the same time send-
ing malicious data to actuators (what Stuxnet did). Thus, we need to monitor the commu-
nication between field devices to identify compromised PLCs in addition to monitoring
supervisory control channels to identify compromised sensors or actuators.

(2) No Consistent Evaluation. There is no common evaluation metric used across multiple
papers. Some papers [12, 111] measure the accuracy of their anomaly detector by looking
at the trade-off between the false-alarm rate and the true positive rate (metrics that are
commonly used in machine-learning, fault-detection, and some intrusion detection pa-
pers), while others [31] argue that measuring the true positive rate is misleading in a field
that has not enough attack samples, so they focus only on measuring the fidelity of their
models (i.e., minimizing the false alarms). In addition, most papers focusing on false data
injection for state estimation in the power grid and most papers in control theory tend to
focus on developing new undetected attacks, and ignore completely the number of false
alarms. Another concern is that several papers do not consider the delay in detecting an
attack, and as we can see in our table, we need more research focusing on improving the
time-to-detect metrics, so that attacks cannot cause irreparable damage by the time they
are detected. It is important to note that most of the papers that consider stateful detection
mechanisms like the CUSUM are actually using statistical tools designed precisely to min-
imize the time to detect an attack. As such they are implicitly including the time-to-detect
as a metric.

(3) No Comparison among Different Models and Different Tests. There is no systematic
publication record that builds upon previous work. While previous work has used differ-
ent statistical tests (stateless vs. stateful) and models of the physical system to predict its
expected behavior (AR vs. LDS), so far they have not been compared against each other,
or if a given combination of physical models with the appropriate anomaly detection test
is the best fit.

(4) Experiments. We have not seen a detailed discussion on the different considerations,
advantages, and disadvantages of using real data from operational systems, testbeds, or
simulations. Each of these experimental scenarios are different and provide unique in-
sights as well as unique limitations for physics-based detection algorithms.

Suggested Improvements. To address the first limitation, we propose a set of guiding principles
for discussing trust models for attack detection in control systems in Section 6.1. To address the
last two points, we introduced a new evaluation metric [105], which we describe in Section 6.2.

6 IMPROVING PHYSICS-BASED ATTACK DETECTION

6.1 Trust Assumptions

Understanding the general architecture between actuators, sensors, controllers, and control cen-
ters is of fundamental importance to analyze the implementation of a monitoring device and most
importantly, the trust assumptions about each of these devices, as any of these devices (actuators,
sensors, PLCs, or even the control center) can be compromised.

Control systems have in general a layered hierarchy [114], with the highest levels consisting of
the Supervisory Control Network (SCN) and the lowest levels focusing on the Field Commu-

nications Network (FCN) with the physical system, as shown in Figure 10. A survey of commu-
nications in industrial control systems can be found in Gaj et al. [26].

If we were to deploy our anomaly detection system in the SCN (which typically has net-
work switches with mirror ports making it the easy choice), then a compromised PLC can send
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Table 3. Detectability of Attack Depending on Trust in Components

Component Trust Detection
PLC Sensor Actuator possible Comment
� - - - Bad actuation and bad sensing
- - � - False sensing justifies bad controls
- � - ∼ Attack effects observable
� - � � Attack effects observable
� � - � Attack effects observable
- � � � Bad command detection
� � � � No attack possible

� = trusted/detection possible, - = untrusted/detection not possible, ∼= cannot detect zero-
dynamics attacks.

manipulated data to the FCN, while pretending to report that everything is normal back to the
SCN. In the Stuxnet attack, the attacker compromised a PLC (Siemens 315) and sent a manipu-
lated control signal ua (which was different from the original u, i.e., ua � u) to a field device. Upon
reception of ua , the frequency converters periodically increased and decreased the rotor speeds
well above and below their intended operation levels. While the status of the frequency convert-
ers y was then relayed back to the PLC in the field communications layer, the compromised PLC
reported a false value ya � y to the control center (through the SCN) claiming that devices were
operating normally.

By deploying our network monitor at the SCN, we are not able to detect compromised PLCs
(unless we are able to correlate information from other trusted PLCs), or unless we receive (trusted)
sensor data directly.

A number of papers we analyzed did not mention where the monitoring devices will be placed,
which makes it difficult to analyze the author’s trust model. For example, analyzing the DNP3
communications standard [57, 58] implicitly assumes that the monitoring device is placed in the
SCN, where DNP3 is most commonly used, and this security monitor will thus miss attacks that
send some values to the SCN, and others to the FCN (such as Stuxnet). Therefore, such papers
implicitly assume that the PLC is reporting truthfully the measurements it receives, and the control
commands it sends to actuators. This weak attacker model limits the usefulness of the intrusion
detection tool.

To mitigate such restrictions, we argue that anomaly detection monitors should (also) be used at
the FCN to detect compromised PLCs, actuators, and sensors. Assuming the monitor is placed in
the FCN, the selection of trusted components determines the kind of attacks that can be detected
(see Table 3). Our analysis shows that as long as you trust two components in the loop, it is possible
to detect an attack on the remaining component. If we trust the sensors but do not trust either the
actuators or the PLCs, then we can still detect attacks, unless they are zero-dynamic attacks [83,
102, 103] (although not all physical systems are vulnerable to these attacks). Finally, if we only trust
the actuator (or only the PLC), the attacks could be completely undetected. We note that while there
are still some attacks that cannot be detected, we can still detect more attacks than at the SCN.

To illustrate some advantages of monitoring the FCN, we show experimental results obtained
from a water treatment testbed.

6.1.1 Minimizing Trust Assumptions by Developing a Security Monitor in the Field Layer of

Industrial Control Systems. The Secure Water Treatment (SWaT) testbed we use for our experiments
is a water treatment plant consisting of six main stages to purify raw water. The testbed has a total
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Fig. 11. Illustrations of the SWaT testbed.

of 12 PLCs (six main PLCs and six in backup configuration to take over if the main PLC fails). The
general description of each stage is as follows: Raw water storage is the part of the process where
raw water is stored and it supplies water to the water treatment system. It consists of one tank,
an on/off valve that controls the inlet water, and a pump that transfers the water to the ultra fil-
tration (UF) tank. In Pre-treatment the Conductivity, pH, and Oxidation-Reduction Potential (ORP)
are measured to determine the activation of chemical dosing to maintain the quality of the water
within some desirable limits. Ultra Filtration is used to remove the bulk of the feed water solids and
colloidal material by using fine filtration membranes that only allow the flow of small molecules.
Then, the remaining chlorines are destroyed in the Dechlorinization stage, using ultraviolet chlo-
rine destruction unit and by dosing a solution of sodium bisulphite. The Reverse Osmosis (RO)
system is designed to reduce inorganic impurities by pumping the filtrated and dechlorinated wa-
ter with a high pressure (see Figure 11(a)). Finally, the RO final product stage stores the RO product
(clean water). Each stage is controlled by two PLCs (primary and backup); the primary and backup
PLC for the raw water stage can be seen in Figure 11(b). The PLC receives the sensor information
(water level and water flow for stage 1) and computes the corresponding control actions. The field
devices, i.e., actuators/sensors, send and receive 4–20mA signals that must be converted back and
forth to their corresponding physical value.

The network of the testbed (illustrated in Figure 10) uses the Common Industrial Protocol
(CIP) [11] as the main data payload for device communications at the SCN, while a device-and-
vendor dependent I/O implicit message is used at the FCN. The payloads are encapsulated follow-
ing the Common Packet Format of the EtherNet/IP specification [80] and transported through any
of the two available physical layers: either wired over IEEE 802.3 Ethernet or wireless using IEEE
802.11.

The availability of a semantically rich network protocol like CIP at the SCN layer facilitates
deep-packet inspection, because parsing and extracting semantically meaningful values is fairly
straightforward; however, performing deep-packet inspection at the Field layer means working
with low-level data where values are exchanged without standard units of measurement, and
where the protocol is not publicly available. This difference is one of the biggest challenges in
deploying security monitors in the field layer and one we tackle next.

I/O implicit messages are device and vendor dependent (Allen-Bradley in this deployment), and
because the specification is not publicly available, we used Wireshark [116] together with the
Testbed’s Control Panel and Electrical Drawings manual to develop the exact structure of the
EtherNet/IP-encapsulated I/O implicit messages.

We identify three different vendor and device-dependent I/O implicit messages corresponding
to each of the three types of signals the field devices send and receive (see Table 4): analog input,
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Table 4. I/O Implicit Messages

I/O Message Signal size (bits) No. of signals Avg. Freq. (ms)
Digital Input 1 32 50
Digital Output 1 16 60
Analog Input 16 12 80

Fig. 12. Digital input module with 32 input signals (1-bit signals) for the raw water storage stage.

digital input, and digital output signals. Figure 12 shows the I/O implicit message for the digital
input signals. It is a stream of 32 bits, corresponding to each of the digital inputs signals. The
spare channels are those not in use by the current deployment. The digital outputs are grouped
in a 16-bit stream (1 bit per signal), while the analog inputs are grouped in a 24-byte stream with
16 bits per signal.

The I/O implicit messages representing the analog signals are sent by the field devices to the
PLC with an average frequency of 80ms. They transport the numeric representation of the 4–20mA
signals measured by the analog sensors. To scale back and forth between the 4–20mA signal to the
real measurement, we use the Equation (3). The constant values depend on the deployment and
the physical property being measured:

Out = (In − RawMin) ∗ EUMax − EUMin

RawMax − RawMin
+ EUMin. (3)

We developed a command-line interpreter (CLI) application that includes a library of attacks and
a network monitoring module implementing stateful and stateless detection mechanisms. The at-
tack modules are capable of launching diverse spoofing and bad-data-injection attacks against the
sensor and actuator signals of the testbed. The attack modules can be loaded, configured, and run
independently of each other, allowing to attack sensors/actuators separately. The attack modules
also can be orchestrated in teams to force more complex behaviors over the physical process, while
maintaining a normal operational profile on the Human Machine Interface (HMI). The CLI appli-
cation consists of 632 lines of Python [118] 2.7 code and its only external dependencies are Scapy
and NetFilterQueue.

Making use of Scapy [119], we developed a new protocol parser for the Allen-Bradley pro-
prietary I/O implicit messages used for signal communication between the field devices and the
PLCs, and for the EtherNet/IP Common Packet Format wrapper that encapsulates it. Scapy was
also used to sniff, in real-time, the sensor readings and actuation commands from the EtherNet/IP-
encapsulated messages and to inject them with fake data [104]. Our software calculates the data
integrity checksums used by the Transport Layer protocol in use; the FCN makes use of User Data-
gram Protocol (UDP) for the transport of EtherNet/IP I/O implicit messages among field devices.

To avoid duplication of packets and/or race conditions between original and injected packets,
we employed the NetFilterQueue [117] Python bindings for libnetfilter queue to redirect all the
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Fig. 13. (Left) A sensor attack (in orange) starts at time 200s. A false sensor value of 0.1m forces the PLC to

turn on the pump to fill the tank with water. The real height of water in the tank starts increasing (blue)

and will continue until it overflows the tank. (right) A more intelligent attack that remains undetected by

changing the sensor measurement slowly. Its impact is not critical due to the control actions.

EtherNet/IP I/O messages between PLC and the field devices to a handling queue defined on the
PREROUTING table of the Linux firewall iptables. The queued packets can be modified using Scapy
and the previously mentioned message parser and finally released to reach their original destina-
tion, e.g., PLC or field devices. Likewise, this technique allowed us to avoid disruptions on the
sequence of EtherNet/IP counters and injection of undesirable perturbations in the EtherNet/IP
connections established between field devices.

We now illustrate how our tool can be used to launch and detect attacks in the testbed.

Attacking the Water Level. The goal of the attacker is to deviate the water level in a tank as
much as possible until the tank overflows.

To detect these spoofed sensor values, we use an LDS model of the water level. In particular,
we use a mass balance equation that relates the change in the water level h with respect to the
inletQ in and outletQout volume of water, given byArea dh

dt
= Q in −Qout , whereArea is the cross-

sectional area of the base of the tank. Note that in this process the control actions for the valve
and pump are On/Off. Hence, Q in or Qout remain constant if they are open and zero otherwise.
Using a discretization of 1s, we obtain an estimated model of the form

hk+1 = hk +
Q in

k
−Qout

k

Area
.

Note that while this equation might look like an AR model, it is in fact an LDS model, because
the input Q in

k
−Qout

k
changes over time, depending on the control actions of the PLC (open/close

inlet or start/stop pump). In particular, it is an LDS model with xk = hk , uk = [Q in
k
,Qout

k
]T , B =

[ 1
Ar ea
,− 1

Ar ea
], A = 1, and C = 1.

We start by using a stateless anomaly detection mechanism to identify attacks. Figure 13 (left)
shows a sensor attack (in orange) starting at time 200s. While the real height of the water in the
tank is 0.5m, a false sensor value of 0.1m forces the PLC to turn on the pump to fill the tank
with water. The real height of water in the tank starts increasing (blue) and will continue until it
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Fig. 14. (Left) Undetected attack that seeks to overflow the tank. Note that using stateless detection it is not

possible to detect and the water is spilled. Stateful detection accumulates the residuals fast enough to detect

the attack. (Right) The attack is designed to make it stealthy for both detection mechanisms. However, the

impact (deviation from the HIGH value) is very small.

overflows the tank. This abrupt change observed by our attack-detection tool, from 0.5m to 0.1m
in the height of the tank in an instant does not match the physical equations of the system, and
therefore the residual value (lower left plot) will increase way above the dotted line that represents
the threshold to raise an alert.

As we can see, it is very easy to create attacks that can be detected, and this poses a challenge
for designing good evaluation metrics and good attacks. If we use the detection rate (true positive
rate) as a metric for these attacks, then we would always get 100% detection rate.

However, for any physical system a sophisticated attacker can spoof deviations that follow rela-
tively close to the “physics” of the system while still driving the system to a different state. Figure 13
(right) shows an attack starting at time 400s that slowly starts to change the false sensor value (or-
ange) forcing the real height of the water in the tank to grow; however, the anomaly detection
statistic (bottom right) does not reach the threshold necessary to raise an alarm.

We can also compare the performance of a CUSUM stateful vs. a stateless test for these types of
undetected attacks. Figure 14 (left) shows how an attack that tries to fake a sensor signal growing
slower from its real value can bypass a stateless anomaly detection statistic and overflow the tank;
however, it will be detected by the CUSUM statistic. Figure 14 (right) shows that if the attacker
wants to avoid being detected by the CUSUM statistic, then the amount of deviation it can inject
to the system is so small, that it cannot force an overflow of the tank (i.e., it cannot drive the real
water height to 1.1m). In short, the selection of the appropriate anomaly detection statistic can
limit the ability of an attacker to damage the system, but we need a systematic way to quantify
the effectiveness of these defenses.

6.2 Towards Better Evaluation Metrics

One of the differences between detecting attacks in control systems when compared to detecting
attacks in general IT systems is that researchers do not have readily available data from attacks
in the wild. Even if we test our algorithms on the few known examples (like Stuxnet), they are
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domain specific, and it is not clear they will give insights into the evaluation other than to show
that we can detect Stuxnet (which can be easily detected ex post). For that reason, researchers need
to generate novel attacks in their papers, and the question we would like to address in this section
is how to create attacks that are general enough to be applicable across multiple industrial control
domains but that will also allow us to define an evaluation metric that is fair (and that is not biased
to detect the specific attacks from the researchers).

To motivate the need of a new metric, we now discuss the challenges and limitations of previ-
ously used metrics.

Measuring the True Positive Rate is Misleading. To obtain the true positive rate of a detection
algorithm, we need to generate an attack that will be detected. It is not clear if there can be a
principled way of justifying the generation of an attack that will be detected as this implies our
attacker is not adaptive and will not attempt to evade our detection algorithms. Publications using
the true positive rate [12, 111] generate their attacks as random signals (e.g., a sensor reporting
random values instead of reporting the true state of the physical system). This type of non-strategic
random failure is precisely what the fault-detection community has been working on for over
40 years [115]; with those attacks, we are not advancing the state of the art on attack-detection,
but rather reinforcing the fact that fault-detection works when sensor or control signals fail in a
non-malicious way.

Model Fidelity is an Incomplete Metric. One of the first papers to articulate why measuring in
a meaningful way the true positive rate for control systems is hard is the work of Hadziosmanovic
et al. [31]. Having summarized the reasons why measuring the true positive rate can be mislead-
ing, they focus instead on understanding how accurately their AR system models the real-world
system and identifying the cases where it fails. They are more interested in understanding the
model fidelity than in specific true-/false-alarm rates. However, understanding the model fidelity
is implicitly looking at the potential of false alarms, because deviations between predictions and
observations during normal operations are indicators of false alarms. While this is a good approach
for the exploratory data analysis done in the paper, it might be misunderstood or applied incor-
rectly by future researchers. The anomaly detection rule of “never raise an alert” will have zero
false alarms—i.e., perfect fidelity—but it never detects any attack.

Ignoring False Alarms Does not Provide a Complete Evaluation. As we discussed before, the
line of research started by false data injection attacks for state estimation in the power grid [60, 61]
focuses on developing new ways to find attacks or to find new undetectable attacks; however, they
tend to ignore the evaluation of the system under normal conditions (the false-alarm rate). A simi-
lar emphasis on attack detection and on identifying undetectable attacks but ignoring false alarms
can be seen in the control theory community [83]; at the end of the day, you can detect all attacks
by generating an alert at every single time-step k , but this will give raise to an unmanageable
number of false alarms.

Lessons From The Last Three Attacks in Section 6.1. If we had evaluated our anomaly de-
tection algorithm against using a traditional intrusion detection metric like ROC curves, and our
attack examples consisted of the last three attacks presented in the previous section (a stealthy
attacker), then we would have had a 0% detection rate; that is, our ROC curve would be a flat
line along the x-axis with a 0% value in the y-axis (Figure 17 (left)). This problem is not unique to
ROC curves, most popular metrics for evaluating the classification accuracy of intrusion detection
systems can be shown to be a multi-criteria optimization problem between the false-alarm rate,
and the true positive rate [14], and all of them depend on the ability of a system to detect some
attacks.
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Fig. 15. Difference between a fault and an attack: a sophisticated attacker will remain undetected by main-

taining the anomaly detection statistic S below the threshold τ to avoid raising alarms.

To obtain the true positive rate of a detection algorithm, we need to generate an attack that will
be detected, and it is not clear if there is a principled way of justifying that to evaluate a system
we need to generate attacks that will be detected, as this implies that the adversary is not adaptive
and will not attempt to evade our detection algorithms.

In the previous section, we showed that for any anomaly threshold τ , a “smart” attacker can
always launch an attack that keeps the anomaly detection statistic below this threshold, and there-
fore this “smart” attacker can always launch attacks that will not be detected (i.e., the attacker can
create a variety of attacks that will have a 0% detection rate). Figure 15 illustrates this problem. In
this figure, an anomaly detection statistic S keeps score of the “anomalous” state in the system: if
S increases beyond the threshold τ , it will raise an alarm. Random failures are expected to increase
the anomaly score, but a sophisticated attacker that knows about this anomaly detection test will
be able to remain undetected.

The question that we need to answer here is then, How much can the attacker affect the

system while remaining undetected?

In addition to a metric that quantifies how much the attacker can affect the system without
being detected, we need to consider a metric that shows the trade-offs involved. Most of the work
in control theory and power system conferences ignore false-alarm rates in their analyses [60,
61, 83]; however, at the end of the day, you can detect all attacks by generating an alert at every
single time-step k , but this will give rise to an unmanageable number of false alarms, so we need
to illustrate the inherent trade-off between security and false alarms (usability).

In conclusion, the traditional trade-off between false alarms and detection rate is not a good fit
for our problem; however, focusing solely on model fidelity will not give us any indication of what
an attacker can do. Ignoring false alarms prevents assessment of the practicality and usability of
the system.

Design Options for Metrics. Looking again at our literature review, the majority of previous
work uses a model of the physical system (LDS or AR) to generate an expected value ŷk . This
prediction is then compared to the sensor measurements yk to generate a residual rk = |ŷk − yk |.
We test if rk > τ , where τ is a threshold we can adjust to lower false alarms while still hoping to
achieve good detection.

A stateless test generates an alarm if rk > τ , where τ is a threshold we can adjust to lower
false alarms while still hoping to achieve good detection. A stateful test instead will compute an
additional statistic Sk that keeps track of the historical changes of rk and will generate an alert if
Sk ≥ τ (another appropriately chosen threshold).

We can clearly see that increasing the threshold will reduce the number of false alarms; however,
what do we give up by reducing the number of false alarms? Traditionally the trade-off for reducing
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Fig. 16. Illustration of our proposed tradeoff metric in Reference [105]. The y-axis is a measure of the worst

the attacker can do while remaining undetected, and the x-axis represents the expected time between false

alarms E[Tf a]. Anomaly detection algorithms are then evaluated for different points in this space.

the number of false alarms is a reduced true positive rate, but as we discussed before, this is not a
good metric for our case. Notice that, if the threshold is too low, an attacker has to produce attacks
whereyk will be similar from the expected behavior of our models, but if it is too high, the attacker
has more leeway to deviate yk and damage to the system without raising alarms. We argue that
the metric that we need is one that shows the trade-off between the number of false alarms and
the ability to minimize the negative consequences of undetected attacks.

Summary. A classification accuracy metric of an anomaly detection algorithmA needs to capture
two things: (1) the ability of A to detect attacks (we call this a security metric) and (2) the ability
of A to label correctly normal events so that it does not raise too many false alarms (we call this
a usability metric). The security metric and the usability metric represent a trade-off that needs to
be balanced (lower false-alarm rates typically means lower ability to detect attacks), and therefore
we need to include both (the security metric and the usability metric) in a trade-off plot.

6.3 New Evaluation Metric

It is clear that we need to find a consistent way to evaluate and compare different anomaly de-
tection proposals, but so far there is little research trying to address this gap. We have recently
proposed a new evaluation metric that takes into account the usability and security factors for
physics-based attack detection algorithms [105]. We have analyzed the trade-off between the im-
pact of the worst attack the adversary can launch while remaining undetected (y-axis) and the
average time between false alarms (x-axis). This trade-off metric is illustrated in Figure 16, and its
comparison to the performance of ROC curves (and other metrics that use the true positive rates
as part of their calculations) against the adversary model we consider is illustrated in Figure 17.

Y-axis (Security). We consider a strong adversary model where the attacker knows all details
about our anomaly detection test, and thus can remain undetected, even if we use active monitoring
Given an anomaly detection threshold τ , we want to evaluate how much “damage” the attacker
can do without raising an alarm.

The adversary wants to drive the system to the worst possible condition it can without being
detected, where “worst” refers to the maximum deviation of a signal from its true value that the

attacker can obtain (without raising an alarm, and given a fixed-period of time, otherwise given
infinite time, the attacker might be able to grow this deviation without bound).

X-axis (Usability). While the y-axis of our proposed metric is completely different to ROC curves,
the x-axis is similar, but instead of using the false-alarm rate, we use instead the expected time
between false alarms E[Tf a]. This value has a couple of advantages over the false-alarm rate: (1) it
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Fig. 17. Comparison of ROC curves with our proposed metric: ROC curves are not useful to measure the

effectiveness of stealthy attacks.

addresses the deceptive nature of low false-alarm rates due to the base-rate fallacy [6], and (2) it
addresses the problem that some anomaly detection statistics make a decision (“alarm” or “normal
behavior”) at non-constant time intervals.

7 RELATED WORK

There are several works that survey different aspects of security in cyber-physical systems from
different domains. Several surveys [34, 43, 48, 59, 65, 99] focus their attention on security and
privacy in smart grids and they explore different vulnerabilities in RTUs, IEDs, and smart meters
that can be exploited by adversaries. Other surveys [2, 79, 87] analyze different types of attacks
that can gain access to telemetry interfaces, software, and hardware in medical devices, with a
special attention to implantable medical devices. Recently, there has been an increasing attention
in manufacturing devices and the risks of including more sophisticated communication capabilities
[81, 113, 121]. Approaches that do not focus on a specific domain but instead address security and
privacy issues in a general CPS context include References [18, 32, 33, 39, 64, 72, 109]. Even though
there is a wide number of surveys from different venues that address several aspects of security
in CPS, we are the first ones that focus on physics-based anomaly detection and in proposing a
unified taxonomy that include the vast amount of research in this field.

8 CONCLUSIONS

In this work, we introduced theoretical and practical contributions to the growing literature of
physics-based attack detection in control systems. In particular, we provide a comprehensive tax-
onomy of related work and discuss general shortcomings we identified. We hope that by presenting
multiple research papers in a unified way, we can motivate further discussion in this space and
help other researchers develop the theoretical foundations, the language, and the tools to propose
new attack models, or new metrics to address any limitations that our work may have.

We also showed that in the literature there is a not a unified methodology to evaluate and
compare different detection mechanisms. In particular, we argued that using true positive rates
assumes that attacks will be detected, but a sophisticated attacker can spoof deviations that follow
relatively close to the “physics” of the system (launch undetected attacks) while still driving the
system to a different state. We introduced the evaluation metric proposed in Reference [105] that
can be used to compare different attack detection strategies by quantifying the maximum impact
an attack can cause while remaining undetected. This is fundamentally different than any metric
that uses true positives. Had we used ROC curves for our attacks, we would have obtained a flat
line along the x-axis, because we have 0% detection rate. We believe this metric is a fundamental

ACM Computing Surveys, Vol. 51, No. 4, Article 76. Publication date: July 2018.



A Survey of Physics-Based Attack Detection in Cyber-Physical Systems 76:31

change to the way intrusion detection systems can be evaluated in the control systems space and
we encourage the research community to use this metric or propose new metrics that allow the
comparison of previous and current detection mechanisms even in the presence of stealthy attacks.

In all the systems we surveyed, the defender always assumed a fixed number of authenticated
sensors and controllers, but an area that has been relatively unexplored in CPS is the concept
of Sybil attacks, where attackers can create new sensors (and potentially controllers as well) to
compete with honest sensor data. Sybil attacks can be particularly problematic in crowdsourced
sensor data such as routing services like Waze [110]. As crowdsourcing becomes more prevalent
in emerging CPS applications, Sybil attacks are a new type of attack that researchers will need to
consider more in the future.

Future Work. There are many challenges for future research. For example, closing the gap be-
tween IT and control systems to design better time-series models while taking into account com-
munications networks limitations and extending physics-based anomaly detection in other do-
mains, such as manufacturing and transportation. Most of our experiments considered an attacker
that wants to remain undetected, but in practice an attacker might sacrifice detection for achieving
a desired malicious objective. An additional area of future research is how to respond to alerts.
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