
Modeling Agent-Based Traffic Simulation Properties in Alloy
F. Araujo, J. Valente, R. Z. Wenkstern

Multi-Agent and Visualization Lab
University of Texas at Dallas

Richardson, TX, USA
{frederico.araujo, juniavalente, rymw}@utdallas.edu

Keywords: multi-agent systems, traffic simulation, intel-
ligent transportation systems (ITS), formal specification,
Alloy.

Abstract

The advances in Intelligent Transportation Systems (ITS) call
for a new generation of traffic simulation models that support
connectivity and collaboration among simulated vehicles and
traffic infrastructure. In this paper we introduce MATISSE, a
complex, large scale agent-based framework for the model-
ing and simulation of ITS and discuss how Alloy, a modeling
language based on set theory and first order logic, was used
to specify, verify, and analyze MATISSE’s traffic models.

1. INTRODUCTION
For the past twenty years, Intelligent Transportation Sys-

tems (ITS) have been considered as possible solutions for
the traffic safety and congestion problems. ITS are defined
as “the application of advanced sensor, computer, electron-
ics, and communication technologies and management strate-
gies in an integrated manner to increase the safety and effi-
ciency of the surface transportation system” [19]. The work
presented in this paper is based on a novel, multilayered in-
tegrated ITS for safety improvement and congestion reduc-
tion. The ITS infrastructure is the result of discussions con-
ducted by a group of researchers at the University of Texas at
Dallas [3, 25]. Traffic is viewed as a bottom-up phenomenon
that is the consequence of individual decisions at the micro-
level, and traffic management as a top-down activity that is
the result of decisions taken at the macro-level. Both macro
and micro-levels consist of multi-agent based infrastructures
where autonomous entities continuously communicate and
interact with each other. Even though some of the proposed
ITS components have already been implemented, the overall
infrastructure is still in its conceptual stage.

Given the critical role of interactions among ITS compo-
nents and their independent decision making capabilities, the
use of simulation techniques to test traffic scenarios under
nominal and extreme conditions was necessary. MATISSE
(Multi-Agent based TraffIc Safety Simulation systEm) is an
agent-based “tailor made” simulation framework that was de-
signed to provide a platform for the execution of such sce-

narios. The design of this large-scale, distributed, multi-agent
based simulation framework revealed the need for the defini-
tion of additional entities, adding a layer of complexity to the
problem. Before embarking on the full-scale development of
MATISSE, the specification and validation of the simulation
framework’s properties proved to be necessary.

Alloy is a modeling language based on set theory and first
order logic that has been used in both industry and academia
to validate a wide variety of systems [7, 10, 16]. The language
has a simple and concise syntax and comes with a powerful,
integrated tool for compiling and analyzing models. The pur-
pose of this paper is to present a formalization of the MA-
TISSE model in Alloy, and discuss how the model’s core
properties are verified using Alloy’s Analyzer. In particular,
we discuss an approach to produce execution traces from the
specification. These traces serve two purposes: they allow for
a thorough analysis and evaluation of the traffic model; and
demonstrate the suitability of MATISSE for the simulation of
ITS scenarios.

In the following section we give an overview of related
works. In Section 3 we briefly present the proposed ITS and
MATISSE’s high level architecture. In Sections 4 and 5 we
discuss how Alloy was used to specify, verify, and analyze
MATISSE’s model. Finally, in Section 6 we share the lessons
learned from this experience.

2. TRAFFIC SIMULATION
There are two major approaches to simulate traffic scenar-

ios. Macroscopic models [1, 17] describe traffic as a physical
flow of fluid and make use of mathematical equations relat-
ing macroscopic quantities (e.g., traffic density, flow rate and
average velocity). These models assume rational driving be-
havior and fairly consistent traffic streams and thus are unfit
to model real traffic operations.

In contrast, microscopic models consider the characteris-
tics of individual traffic elements (e.g., vehicles, traffic lights,
traffic signals, driver behavior) and their interactions. Typical
microscopic models are based on analytical techniques (e.g.,
queuing analysis, shock-wave analysis) [14] and assume traf-
fic elements with predefined behavioral models. This is a lim-
itation since realistic traffic simulation scenarios call for the
modeling of unexpected behavior and unforeseen environ-
mental conditions. The multi-agent paradigm alleviates this



limitation by providing means to address non-deterministic
behavior in non-deterministic, unpredictable environments.

Over the last decade, a large number of agent-based traf-
fic simulation systems have been proposed. Some focus on
specific small scale traffic problems (e.g., driver behavioral
modeling, tactical driving, evacuation management, intersec-
tion management) [11, 22, 24] while others attempt to tackle
complex large scale traffic scenarios [2, 6, 12]. In this sec-
tion we restrict our discussion to those that best compare to
MATISSE, namely MatSim [2], and Transims [6].

MatSim [2] is an agent-based framework for modeling
transport demand. MatSim represents individual travelers as
agents endowed with predefined plans. These agents follow a
utility based strategy to determine their optimal daily plan.
Interactions among agents are implicitly encoded into the
agent’s utility function. In its current version, traveler agents
cannot directly interact with other agents. In addition, agents
are not capable of perceiving their environment dynamically.
They act upon global environmental knowledge seeded at ini-
tialization time.

Similarly, Transims [6] is a large-scale microscopic simu-
lation system for transportation planning and congestion eval-
uation. In Transims travelers are modeled as agents which
can walk, drive cars, or use buses. Traveler agents can decide
which plan to select depending on their current state but they
cannot dynamically perceive their environment. It is also un-
clear whether they can interact with other agents. Transims’
environment is static and fully observable, thus reducing its
capabilities to model complex and realistic scenarios.

Our work enhances the conventional urban traffic simula-
tion by proposing a multi-agent based framework that sim-
ulates macro and micro-level traffic entities and their inter-
actions within and across levels. The unique characteristics
of MATISSE are: 1) The simulation environment is open,
i.e., non-deterministic, dynamic, inaccessible and continuous
[23]. The environment has mechanisms that allow the simula-
tion of event propagation. 2) The agents are not given global
environmental knowledge to act upon. They dynamically per-
ceive their surroundings through various senses (e.g., vision,
hearing, smell). 3) At run-time, the user can change the prop-
erties of the simulated agents (e.g, driver “awake” to driver
“asleep”, disable agent sensors) and the environment (e.g.,
change the laws that govern the environment) without inter-
rupting the simulation. To the best of our knowledge, no other
existing framework offers this feature.

A recent system called JaSim [12] was developed along the
same premises as MATISSE. Even though it shares the same
environment structure and similar agent perception mecha-
nisms, it lacks the advanced simulation features of event prop-
agation and dynamic property modification discussed above.

3. OVERVIEW OF ITS AND MATISSE
In this section, we briefly present the main components of

the proposed ITS and discuss MATISSE’s architecture. More
detailed discussions on these topics can be found in [3, 25,
26].

3.1. Elements of a novel ITS
The proposed ITS aims at enforcing communication, inter-
action, and collaboration between various types of elements
defined at various levels of abstraction1.

The infrastructure is based upon two underlying concepts:

• In order to manage a large environment efficiently, it is
necessary to partition the space into smaller defined re-
gions called traffic area;

• Each traffic area is assigned a tower. A tower is required
to: 1) autonomously manage environmental information
about its traffic area; 2) be aware of the traffic elements
(e.g., vehicles, traffic devices) located in its defined area;
3) be able to interact with local traffic elements to inform
them about changes in their surroundings; 4) be able to
communicate with other towers to inform them of exter-
nal events.

In order to manage traffic information efficiently, traffic
towers are organized as a hierarchy (see Figure 1). This struc-
ture is particularly important for the case when towers need
a higher level of knowledge to properly manage their traffic
areas. For example, if congestion is caused by an accident in
an area, and the micro-level information is insufficient for the
tower to determine the best exit route for its local vehicles, it
will communicate with a higher level traffic tower to obtain a
broader image of the traffic.

The micro-level entities are classified in two categories:
Mobile Context-Aware Intelligent (CAI) vehicles [4]. These

are vehicles equipped with devices that allow them to 1) mon-
itor the driver’s behavior in order to prevent possible acci-
dents; 2) communicate with other vehicles and traffic devices;
and 3) interact with the traffic tower infrastructure to obtain
traffic information and guidance in real time.

Stationary Context-Aware Intelligent (CAI) traffic devices.
These include traffic lights, traffic collection devices, and re-
lay units. They serve the purpose of improving safety and
traffic flow on roads and highways by providing informa-
tion about the physical traffic infrastructure and congestion
condition. Traffic lights are equipped with adaptive systems
that allow them to 1) interact with the traffic tower infrastruc-
ture to obtain traffic information in real time, 2) communicate

1In the remainder of this paper we will use the word “micro-level” ele-
ment to refer to an entity that has very limited knowledge of the state of the
world. In contrast, a “macro-level” element refers to one that is aware of a
larger portion of the world.



Figure 1. ITS super-infrastructure

with vehicles for intersection coordination, and 3) communi-
cate with other traffic light controllers to improve traffic flow
when necessary. Traffic collection devices are used on high-
ways (e.g., toll units) to collect information about traffic, and
communicate the information to the traffic management sys-
tem for further analysis (e.g., identification of a drunk driver
on the highway). Relay units are used to pass on information
between the various communicating entities when the physi-
cal distance is too great.

3.2. MATISSE Architecture
MATISSE is a “tailor made” multi-agent based simulation
platform designed to specify and execute simulation models
for the above-mentioned ITS. We define an agent as a soft-
ware entity which [21]: 1) is driven by a set of tendencies in
the form of individual objectives; 2) can communicate, col-
laborate, coordinate and negotiate with other agents; 3) pos-
sesses resources of its own; 4) executes in an environment
that is partially perceived; 5) possesses skills and can offer
services. A virtual agent is an application specific agent that
represents a real world concept (e.g., vehicle, traffic device).

MATISSE defines virtual agents for each micro- and
macro-level element used in the ITS. Vehicle agents simulate
the behavior of human drivers, have individual goals (e.g., ar-
riving at some destination in a reasonably short time), influ-
ence other agents (e.g., turning signals and changing lanes),
and are governed by environmental norms and constraints
(e.g., speed limits and traffic signals). Traffic light and traffic
collection agents are aware of and influence nearby vehicles,
are able to perceive and adapt to changing conditions, and
collaboratively work to achieve certain objectives. Finally,
Traffic Tower agents autonomously manage and control their
traffic area, including the vehicles and traffic devices they en-
close.

In addition to these virtual agents, and for software

design purposes, it is necessary to introduce two design
related concepts: a cell is a repository that encompasses all
information related to a traffic area. A cell controller is a
special purpose agent whose main role is to consistently
provide virtual agents located within its cell with a correct
perception of their surroundings. This is a complex and
critical role in any realistic simulation. More information on
this topic can be found in [20]. It is important to note that a
cell controller does not correspond to a real world concept
since real perception is achieved through physical sensors.

High Level Architecture

As shown in Figure 2, MATISSE’s high level architecture
includes three main components: the Agent-Environment
System (AES) creates simulation instances; the Data Man-
agement System (DMS) stores and processes information
collected from the AES; and the Visualization Framework
receives information from the DMS and creates 2D or 3D
images of the simulation.

Vehicle agent
Management
Component

Vehicle1 Vehicle n

Vehicle–Vehicle Message
Transport Service

…

Virtual Vehicle Platform

Virtual Agent-Controller
Message Transport Service

MATISSE Agent-Environment System

Message Transport Service

Data Management System

Visualization Framework 2D Visualization
System

3D Visualization
System

Simulated Environment Platform

…

Environment
Management
Component

Controller 1 Controller n

Controller –Controller
Message Transport Service

Env. Data
Managmt.

System

Virtual Traffic Device Platform

Traffic Device agent
Management
Component

Collection
Device

Device –Device Message
Transport Service

…Traffic
Light

Virtual Tower Platform

Traffic Tower agent
Management
Component

Traffic
Tower n

Tower–Tower Message
Transport Service

…Traffic
Tower 1

Figure 2. Matisse high level architecture

Matisse’s Virtual Agent Platforms

The four types of agents identified by MATISSE are nat-
urally managed by four distinct agent platforms within the
Agent-Environment System (AES) component. The Virtual
Vehicle Platform manages mobile agents that represent ve-
hicles. Vehicle-agents are created by the Vehicle-Agent Man-
agement Component, and vehicle-agents communicate with
each other through the Vehicle-Vehicle Message Transport
Service. The Virtual Traffic Device Platform manages sta-
tionary agents that represent traffic lights, relays and infor-
mation collection devices. The Traffic-Device-Agent Manage-
ment Component creates and manages traffic-device-agents
within the simulation while Device-Device Message Trans-



port Service handles communication between these stationary
traffic-agents. The Virtual Tower Platform creates and man-
ages the hierarchical infrastructure of traffic-tower-agents.
Finally the Simulated Environment Platform creates and
manages cell controllers. The Environment Agent Manage-
ment Component creates cell controllers, assigns them to a
cell, and maintains the cell controller hierarchy for the simu-
lation.

4. SPECIFYING MATISSE IN ALLOY
Due to the scale and complexity of the simulation architec-
ture, from a software engineering perspective, we found it
necessary to formally specify and validate various simulation
properties before starting the implementation of MATISSE.
In this section we briefly introduce the Alloy language [15]
and present a specification of the simulation properties of
MATISSE in Alloy.

4.1. Overview of Alloy
In the past two decades, several formalisms have been pro-

posed for multi-agent systems (e.g., temporal logic, multi-
modal logic). These formalisms are generally abstract and
not related to concrete computational models [9]. Other ap-
proaches have used traditional formal languages such as Z
and CSP [5, 18]. While providing an accessible notation,
these formalisms lack the diagrammatic representation and
tool support necessary to effectively analyze models.

Alloy is a specification language based on set theory and
first-order relational logic [15]. The language has a sim-
ple and concise syntax that can represent complex structural
properties and behavior. It comes with an Analyzer, a pow-
erful, integrated tool for compiling and analyzing models.
The Analyzer supports two types of automatic analysis: 1)
the search for an instance that satisfies all the constraints and
relations specified in a model; 2) the identification of a coun-
terexample that violates the assertions specified in a model.
Both analysis are performed within a user defined scope that
bounds the cardinality of entity sets in instances of the model.
Outputs can be graphically depicted using the visualizer and
evaluated using the command-line evaluator.

Alloy has been used in both industry and academia [7, 10,
16]. Jackson and Vaziri [16] have proposed an approach to
verify Java methods in Alloy. At IBM, a subset of Alloy has
been used to develop a technique for efficient checking of data
structure invariants [10]. Alloy was also used in [8] to test and
find bugs in Galileo, a dynamic fault tree analysis tool used at
NASA [7].

4.2. Specification of MATISSE Static Proper-
ties

The static properties of a model describe the conceptual
entities and their relationships. In Alloy, these are specified

through the signature declaration.
For example, module TrafficSimulationEntity,

in Figure 3, specifies vehicle-agents, traffic-light-agents,
and tower-agents. It also specifies VirtualEnvironment,
TrafficArea, Cell and CellController. The one key-
word constraints the model to one virtual environment. Sim-
ulation events (both external and internal) are specified by
Event.

module TrafficSimulationEntity
abstract sig VirtualAgent{}
sig Vehicle extends VirtualAgent{}
sig TrafficLight extends VirtualAgent{}
sig Tower extends VirtualAgent{}
one sig VirtualEnvironment{}
sig TrafficArea{}
sig Cell{}
sig CellController{}
sig Event{}

Figure 3. Traffic Simulation Entities

Figure 4 shows a partial specification of MATISSE’s
model. module TrafficSimulation makes use of the el-
ements defined in module TrafficSimulationEntity to
specify the relations and constrains of the model. An example
of a relation, in sig Simulation, is guide that corresponds
to the relationship between tower-agents and vehicle-agents.
The aggregation of module TrafficSimulationEntity

and TrafficSimulationmakes up the complete MATISSE
simulation model.

module TrafficSimulation
open TrafficSimulationEntity
sig Simulation{
dividedIntoArea: VirtualEnvironment one → TrafficArea,
control: Tower one → TrafficLight,
guide: Tower one → Vehicle,
manage: Tower one → one TrafficArea,
containTower: TrafficArea one → one Tower,
containVehicle: TrafficArea one → Vehicle,
towerCollaborate: Tower → Tower,
···
visionVehicle: CellController one → Vehicle,
···
knows: Vehicle → Event,
requestVicinity: Vehicle → CellController,
grantVicinity: CellController → Vehicle → Vehicle
sendEvent: Vehicle → Event → Tower,
notifyEvent: Tower → Event → Vehicle,
propagateEvent: Tower → Event → Tower

}{
containTower = m̃anage
containVehicle = containTower·guide
cellContainVehicle = cellContainCC·visionVehicle
vehicleInfluence = ṽisionVehicle
(sendEvent·Tower) in knows
(sendEvent·Tower)·(Vehicle·sendEvent) in g̃uide
···

}

Figure 4. Partial Specification of MATISSE’s Model

Alloy enables the precise specification of static prop-
erties such as “each virtual traffic area is assigned a
tower-agent”. Using relation multiplicities, containTower:



TrafficArea one → one Tower specifies a one-to-one
relation between traffic area and tower elements. Further,
the constraint containTower=˜manage ensures that each
tower-agent is assigned to a unique traffic area, and that each
area is uniquely associated to its tower-agent.

4.3. Specification of MATISSE Dynamic Prop-
erties

In Alloy, operations are specified through pred-
icates, which relate valid instances of Simulation

through a change in its composition. For instance, pred
requestCCVicinity adds the relation between a vehicle
and its cell controller to s in order to produce s’, in which s

and s’ denote the before and after states of Simulation.
pred requestCCVicinity[vc: Vehicle→ CellController,
s, s’:Simulation]{
vc in (̃Simulation·visionVehicle)
s’·requestVicinity = s·requestVicinity + vc

}

Thus far, the presented specification produces unrelated in-
stances of the MATISSE simulation model. This is not suffi-
cient for modeling simulation scenarios where a sequence of
operations relating different instances of Simulation is re-
quired. As such, we extend our model with execution traces
to allow the ordered execution of operations. To produce exe-
cution traces, we specify a linear ordering over Simulation
elements (see Figure 5).

S1
(first)

S2

S3
(last)

next next

(a) (b)S1

S2

S3

Figure 5. (a) Unrelated instances of the model (b) Execution
trace of the model

This is achieved by importing the library module
util/ordering. This module includes functions first,
next, and last. As depicted by Figure 5 (b), first returns
the first element S1, s1.next returns S2 and s2.next re-
turns S3, and last returns the last element S3.

The following fragments of MATISSE’s specification il-
lustrate the new constraints added to the model to enable ex-
ecution traces. The pred init defines the initial conditions
(i.e., the initial composition) and pred inv defines invariants
(i.e., properties that never change during an execution trace)
of Simulation. Any adjacent Simulation in the ordering
is related by fact traces. For instance, if a vehicle requests
its vicinity in s, then the vehicle’s vicinity will be granted in
s’ through operation grantVehicleVicinity.
module TrafficSimulation
open util/ordering[Simulation] as t
···
pred init[s:Simulation]{ ···}
pred inv[s, s’:Simulation]{

s’·dividedIntoArea = s·dividedIntoArea
s’·containTower = s·containTower
···

}
fact traces {
init[first]
all s:Simulation - last | let s’ = s·next {
inv[s,s’]
···
(#s·knows 6= 0 and #s·requestVicinity 6= 0
and #s·grantVicinity = 0) ⇒ {
s’·knows = s·knows
s’·requestVicinity = s·requestVicinity

let v = (s·requestVicinity)·CellController | {
((v in (s·requestVicinity)·CellController) and
(v not in Vehicle·(CellController·(s·grantVicinity))))
⇒ {let x = (cellControllers[v,Simulation]→ Vehicle)

& (CellController→ vicinityVV[v,Simulation]) |
grantVehicleVicinity[flip23[x],s,s’]}

else s’·grantVicinity = s·grantVicinity
}

}
···

}

With this specification, it is possible to analyze the static
and dynamic properties of MATISSE. In addition, a number
of ITS traffic scenarios involving collaboration, information
dissemination, and event propagation can be planned and de-
signed to validate MATISSE’s traffic model.

5. ANALYZING MATISSE’S PROPERTIES
In this section, we show how the above-discussed Alloy

models can be analyzed to ensure the consistency of the spec-
ification and satisfaction of MATISSE’s traffic model proper-
ties. Hereafter, we refer to the consistency checking of the Al-
loy specification as verification, and reserve the term valida-
tion to the activity of ensuring that the specified model copes
with the intended high level requirements of MATISSE.

5.1. MATISSE’s Properties Verification
For the purposes of verification, the Alloy Analyzer is used

to find instances that violate the assertions specified in the
model. In particular, we show how static and dynamic prop-
erties of the MATISSE simulation model can be verified using
Alloy, thus ensuring the necessary rigor to analyze the speci-
fication against design flaws.

The assertion VehicleSendEventOnlyToTowerGuiding
states that for all instances of the Simulation a vehicle
can send an event (through relation sendEvent) only
to the tower guiding it. No counterexample is found
for this static property following the constraining fact
(sendEvent.Tower).(Vehicle.sendEvent) in˜guide specified in Simulation.
assert VehicleSendEventOnlyToTowerGuiding{
all s: Simulation{
let v = ((s·sendEvent)·Tower)·Event |

(v 6= none) implies
Event·(v·(s·sendEvent)) = (s·guide)·v

}
}



The assertion RequestIsGranted is an example of veri-
fication of a dynamic property of the model, in which we en-
sure consistency between adjacent instances of Simulation.
It states that if a vehicle makes a request for vicinity in s,
then the request must be granted in s’. No counterexample is
found for this property.

assert RequestIsGranted{
all s:Simulation-last, s’:s·next |
let v = (s·requestVicinity)·CellController |
((v - Vehicle·(CellController·(s·grantVicinity)))
6= none) ⇒
v in Vehicle·(CellController·(s’·grantVicinity))

}

5.2. Traffic Scenario Description
The scenario depicted in Figure 6 demonstrates the suit-

ability of MATISSE for safety improvement and congestion
reduction. This ITS scenario consists of vehicles driving on
a one-way road. An event (e.g., an accident, an obstruction
on the road, or any other abnormal condition) has occurred in
Traffic Area A0, and vehicle V0 perceives the event within its
field of vision (shown as a green cone). Under this scenario,
V0 takes the following steps: 1) Informs all vehicles located
in its close vicinity 2 (shown as a circle) about the perceived
event via vehicle-to-vehicle interactions. The notified vehicles
are able to take the necessary actions to avoid a major acci-
dent. 2) Informs traffic tower T0 about the perceived event via
vehicle-to-infrastructure interactions.

After deliberation and based on the event characteristics,
T0 alerts the vehicles located in A0 under its control (i.e.,
V1 to V4) about the event (to enhance safety). T0 also de-
termines the potential impact of this event on to neighboring
traffic areas and informs the adjacent traffic tower T1 of the
event. T1 deliberates, and informs all vehicles located within
Traffic Area A1 of the event and guides them in their choice
of the best alternate route to follow (to avoid congestion). All
vehicles in the traffic area make use of the broader traffic in-
formation to improve the overall safety condition and avoid
traffic congestion.

5.3. Traffic Scenario Validation
The execution traces generated from the Alloy models val-

idate the specified MATISSE’s properties (i.e., virtual agent
perception, agent-to-agent interaction, and event propaga-
tion) with respect to the above-described traffic scenario. Ad-
ditionally, these traces highlight how safety improvement and
congestion reduction goals are achieved in MATISSE.

The execution of the model produces the execution trace
consisting of the following sets of elements:

2A vehicle’s vicinity represents the vehicles that are positioned within the
vehicle’s range of communication, determined by the available communica-
tion technology [27].

Figure 6. Scenario for safety enhancement and congestion
reduction

this/Simulation = {Simulation0, Simulation1,
Simulation2, Simulation3, Simulation4}

t/Vehicle = {t/Vehicle0, t/Vehicle1, t/Vehicle2,
t/Vehicle3, t/Vehicle4, t/Vehicle5, t/Vehicle6,
t/Vehicle7, t/Vehicle8}

t/Tower = {t/Tower0, t/Tower1}
t/TrafficArea = {t/TrafficArea0, t/TrafficArea1}
t/CellController = {t/CellController0}
t/Event = {t/Event0}

These sets (e.g., sig Vehicle, sig Tower) correspond to
the signatures defined in the specification and the elements
(e.g., t/Vehicle0, t/Tower0) are arbitrarily assigned to the
sets at execution time. For the purpose of this section, sets
such as VirtualEnvironment and Cell are omitted from
the discussion.

Figure 7 shows a visual representation of the last in-
stance of the execution trace (i.e., Simulation4). Each ele-
ment is depicted as a geometric figure, and each relation (e.g.,
knows, requestVicinity) as an arrow. The visual representa-
tion of the initial and intermediate instances of the trace (i.e.,
Simulation0, Simulation1, Simulation2, and Simulation3)
are omitted due to space limitation. The following steps de-
scribe in detail the complete execution trace.

In Simulation0, Vehicle0 perceives an Event through its
sensors. It stores this information into its knowledge base
as reflected by relation knows. In Simulation1, Vehicle0
requests the identities of the vehicles in its vicinity from
the CellController, and communicates the event informa-
tion to its virtual traffic tower. This is reflected by relation
requestVicinity between Vehicle0 and CellController, and
relation sendEvent[Event] between Vehicle0 and Tower0.
Tower0 stores the event information into its knowledge
base as reflected by relation towerKnows and relation
vehicleCollaborate denotes the vehicles in a vehicle’s vicin-
ity.

In Simulation2, the CellController proceeds by send-
ing the Vehicle1 and Vehicle2’s ids to Vehicle0. This
is represented by relations grantVicinity[Vehicle1] and
grantVicinity[Vehicle2]. Tower0 communicates Event to all
vehicles in its traffic area. This is depicted by relations
noti f yEvent[Event]. Also, Tower0 uses its acquaintance
model represented by relation towerCollaborate to identify



Figure 7. Last instance of the execution trace

the neighboring tower that might be affected by the event (in
this case Tower1) and passes Event on to it. This is reflected
by relation propagateEvent[Event]. Upon receiving this in-
formation, Tower1 stores Event into its knowledge base as
reflected by relation towerKnowsViaTower.

In Simulation3, Vehicle0 communicates the Event to
Vehicle1 and Vehicle2 which, in turn store the infor-
mation into their knowledge bases as reflected by the
knowsViaVehicle relations. Upon receiving the event infor-
mation, all vehicles within Tower0’s traffic area store the
event information into their knowledge bases as reflected
by the knowsViaTower relation. Also, Tower1 communi-
cates Event to its local vehicles as represented by relation
noti f yEvent[Event].

Finally, in Simulation4, all vehicles within Tower1’s traffic
area (Vehicle5, Vehicle6, Vehicle7, and Vehicle8) store the
event information received into their knowledge base. This is
reflected by the relation knowsViaTower.

6. LESSONS LEARNED
The lessons learned by specifying and executing MA-

TISSE’s model in Alloy are summarized in the points given
bellow:

Abstraction. By abstracting from implementation details,
Alloy helped us focus on the most important aspects of sys-
tem design and explore design alternatives. For instance, it al-
lowed us to revisit various responsibilities assigned to agents
when modeling agent-to-agent interactions (e.g., collabora-
tion between vehicles and traffic towers, event propagation
across traffic areas).

Process. We have started the design activity with a small
model containing just a few signatures and constraints, and

progressed by adding detail iteratively. At each step, key as-
pects of the system were modeled, checked, and simulated
without writing a single line of code.

Model Execution. The execution of traces is a valuable tool
that allowed us to identify several conceptual inconsistencies
of the model. The step-by-step scenario execution enabled us
to analyze the various states in which the traffic model can be
and validate its high level properties.

However, we experienced difficulty coping with the tim-
ing aspects of the simulation. For instance, there is no built in
mechanism in Alloy to specify and verify real-time properties
such as that a given communication among agents occurs in
due time. Although Alloy includes some basic temporal con-
straints, it is less expressive than traditional temporal logics
for specifying more complex temporal properties. In addition,
when specifying behavioral constraints to ensure consistency
between adjacent instances of execution traces, we need to
exert caution not to over-constrain the model. In this respect,
obtaining specific execution traces to validate traffic scenar-
ios can be difficult. Finally, despite its apparent simplicity, a
strong foundation in set theory and logic is essential to spec-
ify complex interactions involving communication and coop-
eration among agents in Alloy.

Based on these observations, we believe that an approach
combining Alloy and Statecharts [13] can alleviate these limi-
tations, allowing for the incorporation of real-time constraints
while contributing to a more natural representation of behav-
ioral properties. Furthermore, this extended formalism could
help with the modeling and analysis of concurrent behavior.



7. CONCLUSIONS
MATISSE is a multi-agent based simulation platform de-

signed to specify and execute traffic simulations for a new
generation of ITS. MATISSE’s unique features include its
open, decentralized and distributed environment; the ability
of agents to perceive their surroundings in simulated real
time; and the ability to execute micro- and macro-level ITS
scenarios within the same framework.

In this paper we discussed how Alloy was used to specify
and analyze the static and dynamic properties of such a com-
plex simulation system, and shared the lessons learned from
this experience. Future work includes determining how to
integrate Alloy models with state-charts to incorporate real-
time constraints and obtain a more natural representation of
behavioral properties, as well as to evaluate the scalability of
the Alloy specification for more complex interaction patterns.

Acknowledgments. This project is partially supported by
Rockwell Collins under the grant number 5-25143.

REFERENCES
[1] Babin, A., M. Florian, L. James-Lefebvre, and H. Spiess (1982).

Emme/2: Interactive graphic method for road and transit plan-
ning. Transportation Research Record (866).

[2] Balmer, M., M. Rieser, K. Meister, D. Charypar, N. Lefebvre,
and K. Nagel (2009). Matsim-t: Architecture and simulation
times. Multi-agent systems for traffic and transportation engi-
neering, 57–78.

[3] Boyraz, P., O. Daescu, A. Fumagalli, J. Hansen, K. Trumper,
and R. Wenkstern (2009). Soteria: An integrated macro-micro
transportation super-infrastructure system for management and
safety. Technical report, Erik Jonsson School of Engineering and
Computer Science, University of Texas at Dallas, Dallas, USA.

[4] Boyraz, P., X. Yang, A. Sathyanarayana, and J. Hansen (2009).
Computer vision systems for “context-aware” active vehicle
safety and driver assistance. In Proceedings of the 21st Interna-
tional Technical Conference on the Enhanced Safety of Vehicles.

[5] Brazier, F., B. Dunin-Keplicz, N. Jennings, J. Treur, and
V. Lesser (1995). Formal specification of multi-agent systems:
a real world case. In Proceedings of the First International Con-
ference on Multi-Agent Systems, ICMAS. MIT Press.

[6] Cetin, N., K. Nagel, B. Raney, and A. Voellmy (2002). Large-
scale multi-agent transportation simulations. Computer Physics
Communications 147(1-2), 559–564.

[7] Coppit, D. and K. J. Sullivan (2000). Galileo: a tool built from
mass-market applications. In Proceedings of the 22nd interna-
tional conference on Software engineering, ICSE ’00. ACM.

[8] Coppit, D., J. Yang, S. Khurshid, W. Le, and K. Sullivan (2005).
Software assurance by bounded exhaustive testing. IEEE Trans-
actions on Software Engineering, 328–339.

[9] D’inverno, M., M. Fisher, A. Lomuscio, M. Luck, M. De Rijke,
M. Ryan, and M. Wooldridge (1997). Formalisms for multi-agent
systems. The Knowledge Engineering Review.

[10] Dolby, J., M. Vaziri, and F. Tip (2007). Finding bugs efficiently
with a sat solver. In Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineer-
ing, ESEC-FSE ’07, pp. 195–204. ACM.

[11] Dresner, K. and P. Stone (2008). A multiagent approach to
autonomous intersection management. Journal of Artificial In-
telligence Research 31(1), 591–656.

[12] Galland, S., N. Gaud, J. Demange, and A. Koukam (2009).
Environment model for multiagent-based simulation of 3d urban
systems. In the 7th European Workshop on Multi-Agent Systems.

[13] Harel, D. (1987). Statecharts: A visual formalism for complex
systems. Science of computer programming.

[14] Helbing, D. and B. Tilch (1998). Generalized force model of
traffic dynamics. Physical Review E 58(1), 133.

[15] Jackson, D. (2002). Alloy: a lightweight object modelling no-
tation. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 11(2), 256–290.

[16] Jackson, D. and M. Vaziri (2000). Finding bugs with a con-
straint solver. In ACM SIGSOFT Software Engineering Notes,
Volume 25, pp. 14–25. ACM.

[17] Lieu, H., A. Santiago, and A. Kanaan (1992). Corflo. an inte-
grated traffic simulation system for corridors. In Traffic Manage-
ment. Proceedings of the Engineering Foundation Conference.

[18] Luck, M. and M. D’Inverno (2001). A conceptual framework
for agent definition and development. The Computer Journal.

[19] Meyer, M. (1997). A toolbox for alleviating traffic congestion
and enhancing mobility.

[20] Mili (Wenkstern), R. Z. and R. Steiner (2007). Modeling
agent-environment interactions in adaptive MAS. In Proceed-
ings of Engineering environments mediated multiagent systems.
European Conference on Complex Systems.

[21] Mili (Wenkstern), R. Z., R. Steiner, and E. Oladimeji
(2006). DIVAs: Illustrating an abstract architecture for agent-
environment simulation systems. Multiagent and Grid Systems,
Special Issue on Agent-oriented Software Development Method-
ologies 2(4), 505–525.

[22] Rossetti, R. and R. Liu (2005). An agent-based approach to as-
sess drivers’ interaction with pre-trip information systems. Jour-
nal of Intelligent Transportation Systems 9(1), 1–10.

[23] Russell, S., P. Norvig, and A. Artificial Intelligence (1995).
Artificial Intelligence A modern approach.

[24] Sukthankar, R., J. Hancock, and C. Thorpe (1998). Tactical-
level simulation for intelligent transportation systems. Mathe-
matical and computer modelling 27(9-11), 229–242.

[25] Wenkstern, R. Z., T. Steel, O. Daescu, J. Hansen, and P. Boyraz
(2009). MATISSE: A large scale multi-agent system for simulat-
ing traffic safety scenarios. In Proceedings of IEEE 4th Biennial
Workshop on DSP for In-Vehicle Systems and Safety.

[26] Wenkstern, R. Z., T. Steel, and G. Leask (2009). A self-
organizing architecture for traffic management. In Proceedings of
Workshop on Self-Organizing Architectures, Working IEEE/IFIP
Conference on Software Architecture and European Conference
on Software Architecture. Also in Lecture Notes in Computer
Science, vol. 6090, D. Weyns, S. Malek, R. de Lemos and J. An-
dersson (eds.), pp 230-250, Springer Verlag, 2010.

[27] Xu, Q., T. Mak, J. Ko, and R. Sengupta (2004). Vehicle-
to-vehicle safety messaging in DSRC. In Proceedings of the
1st ACM international workshop on Vehicular ad hoc networks.
ACM.


