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Abstract—In this paper we present DIVAs 4.0, a framework
that supports the development of large-scale agent-based simu-
lation systems where agents are situated in open environments.
DIVAs includes high-level abstractions for the definition of agents
and open environments, a microkernel for the management of
the simulation workflow, domain-specific libraries for the rapid
development of simulations, and reusable, extendable components
for the control and visualization of simulations. We illustrate the
use of DIVAs through the development of a simple simulator
where virtual agents are situated in a virtual city.

Keywords—Agent based simulation systems; simulation frame-
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I. INTRODUCTION

Multi-Agent Based Simulation Systems (MABS) have pro-

vided new perspectives on modeling and simulating complex

problems. While traditional simulation systems have been lim-

ited to a certain class of applications, MABS have employed

the powerful concepts of adaptation, emergence and self-

organization to model complex, real-world problems. Many

domain specific MABS have been developed over the past

two decades [1, 2, 3, 4]. Even though these systems have

addressed important issues in domains such as social or traffic

simulations they are not reusable outside of their application

area. On the other hand, the multi-agent system community

has spent effort developing generic frameworks for MABS

[5, 6, 7]. These frameworks provide the basic building blocks,

i.e., architectures, software components and libraries for the

development of a variety of agent-based simulation systems.

Unfortunately, none supports the development of MABS where

the environment is open (i.e., inaccessible, non-deterministic,

dynamic and continuous). This represents a major weakness

since realistic simulations require the modeling of dynamic

environments that can only be partially perceived by the

agents.

Over the past several years we have developed a framework

for the development of large scale multi-agent based simu-

lation systems for complex domains. The framework called

DIVAs (Dynamic Information Visualization of Agent systems)

offers reusable architectures, abstract classes, software compo-

nents and libraries to support the development of enterprise-

scale simulation systems. DIVAs is based on the premise that

agents and environment play an equally important role in

MABS. Agents are situated in an open environment that is

partially perceived, and the environment is totally decoupled

from agents. Such a clear separation of duties leads naturally

to extensible, reusable architectures. In addition, DIVAs offers

means to dynamically access and modify agent and environ-

ment properties at run-time, a unique feature that none of the

existing frameworks offers.

In the following section we give an overview of related

works. In Section III we give an overview of DIVAs architec-

ture. In Sections IV-VII we discuss the various components of

DIVAs, namely the Agent System, the Environment System,

the Microkernel, and the GUI and Visualizer. In Section VIII,

we briefly discuss how DIVAs can be used to create a simple

urban city environment and in Section IX we give some

experimental results. The content of this paper is related to

the non-distributed version of DIVAs.

II. RELATED WORKS

Over the past years, a number of multi-agent based simula-

tion systems (MABS) tool suites have been proposed. These

include Netlogo [8], AgentSheets [9], SeSam [10]. While

these systems offer an integrated graphical environment for

specifying, interpreting, and executing simulations, they do

not scale well to realistic, complex scenarios. They are also

difficult to extend and adapt since their architectures are not

easily reusable outside of their application domains.

In the remainder of this section, we restrict our discussion

to those tools that best compare to DIVAs such as the generic

“framework and library” platforms of Repast S [6, 11, 12],

MASON [5] and GAMA [7, 13]. These platforms provide

architectures, software components and libraries to design and

implement a variety of agent-based simulation systems. We

discuss these platforms with respect to their architecture and

the type of environment they promote.

A. Architecture

A pluggable architecture is a desired feature in simulation

frameworks. It supports the rapid development of simulation

system by providing a flexible and easy way to integrate and/or

remove self-contained modules.

Among the frameworks discussed in this section, only MA-

SON is based on a pluggable architecture. MASON consists of

three main components: 1) the Model Component corresponds

to the simulation core. It provides a collection of classes
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for discrete event scheduler and schedule utilities; 2) the

Visualization Component provides a GUI-based visualization

for the simulation; 3) the Utility Component contains a set

of utility classes e.g., random number generator, GUI widgets

snapshot-generating facilities.

B. Environment

In our discussion on simulation environments, we focus on

three main criteria: separation between agent and environment

concepts, environment openness and environment structure.

1) Separation between agent and environment concepts: In

modern MABS, the virtual environment plays an essential role

in a simulation: it supplies the “physical” conditions for the

virtual agents to exist, provides agents with information about

their surrounding, enforces physical laws, etc. Researchers

have stated that virtual environments should be decoupled

from agents and be treated as a first class entity in MABS

[14].

Among the aforementioned frameworks, only Repast S, and

GAMA provide a clear separation between the environment

and agent concepts and consider the environment as an

important component of the simulation system.

2) Openness: In order to model realistic simulations, it is

necessary for the simulated environment to be open: virtual

agents should only access the environmental information they

they can perceive; the effect of an action or event in the

environment should not be known with certainty in advance;

the environment should not be static but should undergo

changes as a result of actions or events; and finally the

environment states should not be enumerable.

None of the frameworks discussed in this section

incorporates an open environment model.

3) Environment Structure: In order to develop large scale

simulation systems with thousands of agents perceiving their

surroundings while interacting with each other, it is necessary

to design the virtual environment in such a way that both its

structure and control are decentralized.

With respect to the virtual environment structure all frame-

works have a decentralized environment structure where the

environment is partitioned into smaller area. In Repast S,

contexts represent containers for sets of environment objects.

In MASON, the environment can be represented (optionally)

as an aggregation of fields which associate simulated objects

with locations. In GAMA, the environment is divided into

places which store perception data and allow agents to access

this data.

Even though the aforementioned frameworks have a

decentralized environment structure, all of them incorporate

a centralized control strategy. Centralized control creates a

bottleneck for large scale real-time simulations and limits the

scalability of the simulation.

In this paper we present DIVAs 4.0, a framework for the

development of large scale simulation systems where agents

are situated in an environment. The unique characteristics of

the DIVAs framework are:

1) It can be used to implement a variety of simulation

systems in different domains.

2) It provides a pluggable architecture with a collection

of reusable abstract classes and software components

that allow the rapid development of complex simulation

systems.

3) It provides the necessary building blocks for the imple-

mentation of:

a) virtual open environments with decentralized struc-

ture and control,

b) and virtual agents that can dynamically perceive

their surroundings through various senses while

interacting and/or collaborating with one another.

4) It provides pluggable 2D and 3D visualizers.

5) It provides editors that can be integrated in simula-

tion systems to allow the run-time property modifi-

cation of simulated agents (e.g., change goal, mod-

ify sensor values) and the virtual environment (e.g.,

add/modify/remove environment objects, trigger external

events).

To the best of our knowledge, no other existing framework

offers this integrated set of features.

In the following section we give an overview of DIVAs

architecture.

III. OVERVIEW OF DIVAS 4.0

As shown in Figure 1, DIVAs consists of four main modules:

1) the Simulation Module; 2) the Message Transport Service;

3) the Control and Visualization Module and 4) the Data

Management System.
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Fig. 1. DIVAs framework high-level architecture illustrating its main modules

The framework’s main constituent, i.e., the Simulation

Module, creates large-scale simulation instances. It consists

of three subsystems. The Agent System creates and manages

agents. The Environment System creates and manages
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a dynamic environment where agents are situated. The

Simulation Microkernel manages the workflow of the

simulation and provides mechanisms for loading/storing agent

and environment specifications from/to persistent storage

(e.g., xml file).

The second main component of DIVAs 4.0 is the Message
Transport Service (MTS). The MTS’s role is to provide a

messaging infrastructure to allow different elements of the

simulation to communicate with each other through a common

set of interfaces. For instance, it is through the MTS that

simulation elements exchange messages containing simulation

state updates, external stimuli, and control commands.

The interactive Control and Visualization Module receives

information from the MTS, renders 2D and 3D images of the

simulation, and provides mechanisms for users to interact with

the simulation and modify simulation parameters at run-time.

It consists of two subsystems: the Simulation Control GUI and

the Visualization & Editing System.

The Simulation Control GUI allows users to control a

running simulation (i.e., start/stop the simulation, adjust pa-

rameters, save/load simulation states) through the Simulation

Control System. It also allows users to query detailed proper-

ties of simulation entities (e.g., existing traffic lights) through

the Simulation Query System.

The Visualization & Editing System includes a 2D/3D

Visualization System which generates 2D and 3D

representations of the simulation and provides tools for

users to interact with the simulation at run-time (e.g., trigger

events, modify agent properties). It also includes the Editing

System which allows users to specify a virtual environment

(e.g., build a virtual city) and modify the virtual environment

at run-time (e.g., add/edit/delete environment objects).

Finally, DIVAs 4.0 architecture defines a Data Management
System (DMS) which is responsible for storing and processing

information collected from the simulation for data analysis

as well as Domain-Specific Libraries which allow for rapid

development of simulation platforms for specific domains.

Currently, DIVAs embeds models for social and traffic

simulation domains.

In the following sections, we discuss the various components

of DIVAs 4.0, starting with the Agent System.

IV. THE AGENT SYSTEM

A. Concepts

As shown in Figure 2, in DIVAs, an agent consists of four

main modules [15]. The Interaction Module handles an agent’s

interaction with external entities and separates environment

interaction from agent interaction. An agent communicates

with other agents through the Agent Communication Module.

It receives environmental data (e.g., agent states, environment

object states, external event information) from the Environ-

ment Perception Module. The Knowledge Module is parti-

tioned into External Knowledge Module (EKM) and Internal

Knowledge Module (IKM). The EKM serves as the portion of

the agent’s memory dedicated to maintaining knowledge about

entities external to the agent, i.e., acquaintances, environment

objects situated in the environment. The IKM serves as the por-

tion of the agent’s memory dedicated for keeping information

that the agent knows about itself (i.e., current state, physical

constraints, social limitations). The Task Module manages the

specification of the atomic tasks that the agent can perform

(e.g., walk, run). The Planning and Control Module serves

as the brain of the agent; it uses information provided by the

other modules to react to critical situations, plan, initiate tasks,

make decisions, and achieve the agent’s goals.
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Fig. 2. Agent architecture showing the agent’s main components.

B. Agents in DIVAs 4.0

In DIVAS, the Divas-Core.Agent package (see Figure 3)

implements the high-level agent architecture discussed above

and encapsulates packages that correspond to the agent’s

main modules. Divas-Core.Agent structure as well as the

mechanisms that relate the various sub-packages and some

components are implemented and are intended to be reused.

Nevertheless, due to its generic nature, Divas-Core.Agent

also includes abstract components that need to be instan-

tiated. Therefore, in order to create domain-specific agents

(e.g., virtual humans), a developer is required to “fill in the

blanks” by either providing concrete implementations for the

abstract components or by reusing the appropriate predefined

components available in DIVAs libraries. DIVAs 4.0 comes

with a library of components for virtual human agents and

vehicle agents.

In the remainder of this section we discuss the various

packages.

1) Interaction Module: Figure 4 shows the

Divas-Core.Agent.Interaction package. This

package consists of two sub-packages Perception and

Communication that include the components necessary to

implement the Environment Perception Module and the Agent

Communication Module in DIVAs’ agent architecture (see
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Divas-Core.Agent
<<abstract>>

Agent

Task

TaskModule

Planning

PlanningControl
Module

<<abstract>>
ReactiveModule

<<abstract>>
PlanningModule PlanExecutor

Knowledge

KnowledgeModule

Interaction

Perception

PerceptionModule

InteractionModule

Communication

CommunicationModule

Inbox Outbox

<<abstract>>
External

<<abstract>>
Internal

* <<abstract>>
Sensor

<<abstract>>
AgentToAgent

Message

*

<<abstract>>
AgentStimulus

<<abstract>>
Task

*

*

Fig. 3. Divas-Core.Agent design package

Figure 2).

Interaction

Perception

PerceptionModule

InteractionModule

Communication

CommunicationModule

Inbox Outbox

*
<<abstract>>

Sensor

<<abstract>>
AgentToAgent

Message
*

Fig. 4. Divas-Core.Agent.Interaction package

PerceptionModule implements the mechanisms

necessary for an agent to make use of sensors to perceive its

environment. It is associated with abstract Sensors that need

to be defined for domain specific virtual agents. For instance,

in the case of a virtual human agent, a developer may elect

to reuse the vision, auditory or olfactory sensors available in

the DIVAs virtual human component library or define a new

sensor. More details on agent perception in DIVAs can be

found in [16, 17, 18].

The CommunicationModule handles all the agent-to-

agent communications. Agents communicate with each

other by exchanging AgentToAgentMessages. Each

AgentToAgentMessage contains information about the

sender and receiver agent, message type, level of priority,

time the message was sent, and the message itself. The

CommunicationModule provides each agent with an inbox

and an outbox. Outgoing messages are processed by a

messaging service that sends messages asynchronously

through the Agent-Agent Message Transport Service. The

CommunicationModule is fully implemented and only

requires instances AgentToAgentMessages to execute.

2) Knowledge Module: The

Divas-Core.Agent.Knowledge package shown in

Figure 5 includes the components that correspond to

Knowledge Module in the DIVAs’ agent architecture.

Divas-Core.Agent.Knowledge

KnowledgeModule

+world: Memory
+acquaintances: Memory

<<abstract>>
External

+id(): Integer
+self(): AgentState
+goals(): Goal[]
+tasks(): Task[]

<<abstract>>
Internal

Fig. 5. Divas-Core.Agent.KnowledgeModule package

The Internal package consists of knowledge the agent

knows about itself such as its state, its goals, and its con-

straints. This knowledge can be predefined or acquired at run

time. For example, if we wish to endow a virtual human

agent with the knowledge that a bomb is life-threatening, this

information will be stored in +self() at initialization time.

The External package consists of knowledge acquired

by perceiving the environment via the PerceptionModule,

such as events triggered in the environment, nearby agents,

or environment objects.

3) Task Module: The Divas-Core.Agent.Task package

shown in Figure 6 includes the components that implement the

Task Module in the DIVAs’ agent architecture. This package

consists of a set of abstract atomic Tasks associated with

AgentStimuli.

The TaskModule aggregates a set of abstract tasks which

are associated with abstract stimuli. In a domain-specific

simulation, its role is to load concrete tasks for virtual agents.

Therefore for domain-specific agents, it is necessary to
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Divas-Core.Agent.Task

*TaskModule

*

<<abstract>>
AgentStimulus

+execute():AgentStimulus[]

<<abstract>>
Task

Fig. 6. Divas-Core.Agent.Task package

provide concrete implementation for each task the agent can

perform and define the stimuli resulting from the execution of

this task. For example, in order to implement a human virtual

agent, a developer may define a concrete MoveTask and its

associated stimulus, i.e., newPosition(x, y, z) or import a

list of predefined tasks (e.g., TurnTask, OpenDoorTask,

etc.) and their corresponding stimuli from the DIVAs library.

4) Planning and Control Module: The

Divas-Core.Agent.Planning package shown in Figure 7

includes the components needed to implement the Planning

and Control Module in the DIVAs’ agent architecture.

This package consists of PlanningControlModule,

ReactiveModule, PlanningModule, and PlanExecutor.

Divas-Core.Agent.Planning

PlanningControlModule
+reactionRequired(percepts):
boolean
+react(percepts):Plan

<<abstract>>
ReactiveModule

<<abstract>>
PlanningModule PlanExecutor

Fig. 7. Divas-Core.Agent.PlanningControl package

As mentioned earlier, PlanningControlModule serves as

the brain of the agent. Its main role is to determine when

to execute the Reactive or Planning modules. For instance,

in critical situations, such as an explosion, this module will

execute the ReactiveModule, whereas in other cases, the

PlanningModule will be used to plan new goals, tasks, or

decide on a set of actions to perform.

For domain-specific virtual agents, it is necessary to either

provide concrete implementations of ReactiveModule and

PlanningModule or reuse existing modules from DIVAs

library.

As a result of the execution of either module, a Plan is

generated. This plan consists of a set of Tasks the agent has

decided to perform (e.g., open a door and exit a room, flee

from an explosion). This plan is then executed by the prede-

fined PlanExecutor. This results in a set of AgentStimuli

which are handled by the environment.

C. Illustrative Example: Implementing a Virtual Human Agent
in DIVAs 4.0

Figure 8 shows a representation of a concrete implemen-

tation of a human agent using reusable component obtained

from the DIVAs library.

UrbanCity.HumanAgent
Human
Agent

Task

HumanTask
Module

Planning

HumanPlanning
ControlModule

Human
ReactiveModule

HumanPlanning
Module PlanExecutor

Knowledge

HumanKnowledge
Module

Interaction

Perception

HumanPerception
Module

HumanInteractionModule

Communication

HumanCommunication
Module

Inbox Outbox

HumanVisionSensor

HumanAuditorySensor

HumanOlfactorySensor

TalkMessage

HelpMessage

GuideMessage

HumanAgentExternalKnowledge

HumanAgentInternal Knowledge

Human
MoveTask

Human
TurnTask
OpenDoor

Task

ChangeHeading
Stimulus

newPosition
Stimulus

OpenDoor
Stimulus

VirtualHumanLibrary

<<domain specific>>

<<import>>

VirtualHumanSensor

VirtualHumanTask

VirtualHumanPlanning

RVOCollisionAvoidance

DivasHumanVisionAlgorithm

DivasHumanAuditoryAlgorithm

DivasHumanOlfactoryAlgorithm

HumanMoveTask

HumanTurnTask

HumanPathFinding

OpenDoorTask

CloseDoorTask

IdleTask

HumanVisionSensor

HumanAuditorySensor

HumanOlfactorySensor

DivasGlobalVisionAlgorithm

DivasBlindVisionAlgorithm

LookTask

...

ShortestPathFinding

HumanThreatReaction

...

...

Fig. 8. Concrete Virtual Human Agent

public abstract class VirtualAgent<S extends AgentState, 
KM extends KnowledgeModule<S>, IM extends InteractionModule, 
PCM extends PlanningModule<KM, TM>, TM extends TaskModule<KM>> 
{
    protected KM              knowledgeModule;
    protected IM              interactionModule;
    protected PCM             planningModule;
    protected TM              taskModule;

    public VirtualAgent(S state)
    {
        knowledgeModule = createKnowledgeModule(state);
        interactionModule = createInteractionModule(knowledgeModule);
        taskModule = createTaskModule(knowledgeModule);
        planningModule = createPlanningModule(knowledgeModule, 
            taskModule, interactionModule);
    }

    protected abstract KM createKnowledgeModule(S state);
    protected abstract IM createInteractionModule(KM knowledgeModule);
    protected abstract PCM createPlanningModule(KM knowledgeModule, 
         TM taskModule, IM interactionModule);
    protected abstract TM createTaskModule(KM knowledgeModule);
    protected abstract Stimuli generateStimuli();

   ...
}

Fig. 9. Code for Abstract Agent
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public class HumanAgent extends VirtualAgent<HumanAgentState, HumanKnowledgeModule, 
      HumanInteractionModule, HumanPlanningModule, HumanTaskModule> 
{
   public HumanAgent(HumanAgentState state)
   {
       super(state);
   }

   @Override
   protected HumanKnowledgeModule createKnowledgeModule(HumanAgentState state)
   {
       return new HumanKnowledgeModule(state);
   }

   @Override
   protected HumanInteractionModule createInteractionModule
                                (HumanKnowledgeModule knowledgeModule)
   {
       return new HumanInteractionModule
                             (new HumanPerceptionModule(knowledgeModule), 
         new SimpleAgentCommunicationModule(getId()));
   }

   @Override
   protected HumanPlanningModule createPlanningModule
           (HumanKnowledgeModule knowledgeModule, HumanTaskModule taskModule, 
   HumanInteractionModule interactionModule)
   {
       HumanPlanGenerator planGenerator = new HumanPlanGenerator
    (knowledgeModule, taskModule, interactionModule, pathFinding);
       HumanPlanExecutor planExecutor = new HumanPlanExecutor(knowledgeModule);
       HumanReactionModule reactionModule = new HumanReactionModule
    (knowledgeModule, taskModule, interactionModule, pathFinding);
       return new HumanPlanningModule(planGenerator, planExecutor, 
        knowledgeModule, reactionModule);
   }

   @Override
   protected HumanTaskModule createTaskModule
                         (HumanKnowledgeModule knowledgeModule)
   {
       return new HumanTaskModule(knowledgeModule);
   }
...
}

Fig. 10. Code for Virtual Human Agent

As shown in Figure 8, a HumanAgent is a concrete

implementation of the abstract DIVAs’ core Agent. For

example, the abstract virtual human perception module is

implemented by importing predefined human sensors (e.g.,

vision, auditory, olfactory) from the VirtualHumanLibrary.

The same applies to HumanTaskModule. In regards to the

HumanPlanningModule, the developer can either implement

his/her own plan strategy and path finding or reuse modules

from the VirtualHumanLibrary.

For the sake of conciseness, in Figure 9 and 10 we show

portion of the code for abstract agent and virtual human

agent. It is straightforward to notice that HumanAgent is a

specialization of Agent.

V. THE ENVIRONMENT SYSTEM

A. Concepts

In DIVAs, virtual agents are situated in a large virtual envi-
ronment which is open, i.e., inaccessible, non-deterministic,

dynamic, and continuous [19].

DIVAs is based on the premise that in order to manage a

large environment efficiently, it is necessary to partition the

space into smaller defined areas called cells (see Figure 11).

Each cell is managed by a special-purpose agent called cell
controller. A cell controller is responsible for being aware

Fig. 11. Decentralized virtual environment showing the partitioning of the
environment into cells, each cell being managed by a cell controller.

of the virtual agents located in its defined area; interacting

with local virtual agents to inform them about changes in their

surroundings; and interacting with adjacent cell controllers to

inform them of external events and their propagation. It is im-

portant to note that cell controllers are design-specific agents

that do not have counterparts in domain-specific applications.

B. Environment in DIVAs 4.0

The Divas-Core.Environment package shown in Figure 12

includes the main components of DIVAs environment. The

abstract Environment is divided into cells. Each cell

carries a portion of the environment state and aggregates

environment entities such as Agents, EnvironmentObjects,

and EnvironmentEvents, i.e., externally triggered events

that may influence the agents and objects situated in the

environment.

Divas-Core.Environment

List<CC> controllers

<<abstract>>

Environment

<<abstract>>
CellController

* Cell

* <<abstract>>

EnvironmentObject

Event

<<abstract>>

EnvironmentEvent
<<interface>>

Smellable
<<interface>>

Visible
<<interface>>

Audiable

*
<<abstract>>

Divas-Core.Agent::

Agent

*

CC : CellController

Fig. 12. Divas-Core.Environment package

1) Processing Agent Stimuli: As mentioned in Section

IV-B3, when a virtual agent situated in a cell, say C1 decides

to execute a task, it produces stimuli (i.e., action intents) that

are synchronously passed on to the cell controller CC1 (i.e.,

the cell controller responsible for managing the cell in which

the agent is located). In addition, any external stimulus (e.g.,

explosion) triggered during that simulation cycle and affecting

C1 is communicated to CC1. The cell controller combines

all stimuli, resolves conflicting intents (e.g., two agents want

to be in the same (x, y, z) position at the same time) and

returns to each agent an updated state that is legal with respect

to the law of the environment. All special cases involving,

for example, agents crossing boundaries, or agents stepping
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into an obstructed position in an adjacent cell are handled

in this phase. The abstract CellController class include

the workflow for agent stimuli processing. Nevertheless, tasks

such as stimuli combination of conflict resolution need to be

defined by the developer for domain-specific environments.
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Fig. 13. Model showing agent-environment interactions and external stimuli.

2) Propagating Events: Figure 14 shows the Event pack-

age. Each concrete event in DIVAs extends the abstract

EnvironmentEvent, which contains common attributes and

abstract methods for events (e.g., eventID, age, origin,

intensity). In addition, concrete events may realize one or

more of the following marker interfaces: Visible, Audible,

and Smellable. The effects of a concrete event over the

environment vary depending on which interface the event is

marked with.

Divas-Core.Environment.Event

ConcreteEvent

+getVisiblePosition()
+getVisibleScale()

«interface»
Visible

+getAudiblePosition()
+getAcousticEmission()
+getCurrentSoundRadius()

«interface»
Audible

+getSmellPosition()
+getSmellIntensity()
+getCurrentSmellRadius()

«interface»
Smellable

+hasExpired()
+getBounds()

eventID
age
origin
intensity

<<abstract>>
EnvEvent

Fig. 14. Event package

Each cell controller propagates the events it contains. As

simulated events propagate over time and space, their effects

may cross cell boundaries and span multiple cells. In this case,

interaction between neighboring cell controllers are required

to ensure that the propagation is handled properly. For each

event in a given cell, the controller computes the new state

of the event at the current simulation cycle. Then, if an event

has expired, the controller removes it from the cell state and

sends a message to other cells to inform them that an event

has expired and must be removed. Otherwise (if the event has

not expired), the controller checks if the event is leaving its

cells’ boundaries; if it is the case, then the controller forwards

the event influences to the appropriate adjacent controller.

C. Illustrative Example: Implementing an Urban City Envi-
ronment in DIVAs 4.0

We first start by defining, UrbanCityCellController, a

concrete implementation for the abstract CellController.

UrbanCityCellController implements event propagation

mechanisms, conflict resolution and stimuli combination

algorithms for physical environments. Then we

create the UrbanCityEnvironment by binding the

UrbanCity.Environment

List<CC> controllers

<<abstract>>
Divas-Core.Environment::

Environment

<<abstract>>
Divas-Core.Environment::

CellController

*
Cell

*
<<abstract>>

Divas-Core.Environment::

EnvironmentObject

Event

<<abstract>>
EnvironmentEvent

UrbanCityEnvironment

UrbanCityCellController

<<interface>>
Divas-Core.

Environment::

Smellable

<<interface>>
Divas-Core.

Environment::

Visible

<<interface>>
Divas-Core.

Environment::

Audiable

UrbanCityEnvironment

EnvironmentObjects

Building
Tree
Road

UrbanCity.HumanAgent

<<abstract>>

Divas-Core.Agent::

VirtualAgent

HumanAgent

<<domain specific>>

EnvironmentEvents

Bomb

Fireworks

*

*

CC : UrbanCityCellController

Fig. 15. Urban City Environment

UrbanCityCellController to the abstract Environment.

We proceed by either implementing or importing environment

objects such as buildings, roads and trees, and do the same

for environment events. Figure 15 shows a representation of

a concrete implementation of an urban city environment.

VI. THE MICROKERNEL

DIVAs encapsulates its most important core services in a

microkernel. Core services include the simulation heartbeat,

communication infrastructure, configuration management, and

thread management.

As illustrated in Figure 16, the microkernel package

Divas-Core.Microkernel aggregates several core compo-

nents of the simulation framework. SimCommanderFacade

provides a uniform interface to simulation services (e.g.,

start/stop simulation, add agent, edit environment object).

CommModule provides the mechanisms for sending and receiv-

ing messages through the MTS. ConfigurationManager

handles run-time configuration changes to simulation param-

eters and user settings such as minimum cycle time or de-

fault visible distance. IDManager is responsible for assigning

unique IDs to simulated entities. The SimulationCore is

an abstract class which orchestrates the workflow of the

simulation.

Divas-Core.Microkernel

<<abstract>>

SimulationCore

IDManager HeartBeat

Divas-MTS:: CommModule

SimCommanderFacade

ConfigurationManager

Simulation
Configuration

Visualizer
Configuration

E : Environment

Fig. 16. Simulation microkernel package

Heartbeat acts as a time keeper and discrete event gener-

ator for the simulation. In DIVAs the Heartbeat ticks at the

completion each of two distinct phases: the environment phase
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and the agent phase. The execution of the environment and the

agent phases constitutes the simulation cycle (see Figure 17).

:Heartbeat :SimulationCore :Environment :CellController1
tick(phase)

Environment executeEnvironmentPhase( )

executePhaseCC-1()

:CellController-n…

…
executePhaseCC-n()

executeAgentPhaseCC-1()

…
executeAgentPhaseCC-n()

completed(phase)

Agent

…
executePhase_
Agent-1()

executePhase_
Agent-n()

…
executePhase_
Agent-1()

executePhase_
Agent-n()

alt [Phase = Environment]

[Phase = Agent]

executeAgentPhase( )

Si
m

ul
at

io
n

cy
cl

e

Fig. 17. Simulation Cycle

During the environment phase, the Environment object

which is responsible for managing threads allocated to cell

controllers triggers the concurrent execution of cell controllers.

In this phase, each controller 1) deliberates, i.e., combines

agent and external stimuli, resolves conflicts and determines

the new state of its cell; then 2) reacts, i.e., publishes its cell’s

new state for data collection and visualization.

During the agent phase, the Environment object requests

that each cell controller triggers the execution of its agents.

In this phase, agents 1) perceive their new environment state,

2) deliberate to determine their next course of action; and 3)

execute tasks which are in turn converted into stimuli and

passed on to the environment. A new simulation cycle starts.

VII. THE GUI AND VISUALIZER

The user can interact with the simulation at run-time using the

Divas-GUI and Divas-Visualization components.

(a) (b)

Divas-Visualizer

2D/3D Graphics Engine

VizSimState
Repository

2D Visualizer 3D Visualizer

Simulation
Commander

MTS Communication Module

user inputs

user commandssimulation state

Divas-GUI

GUISimState
Repository

MTS Communication Module

simulation state

Control Panel GUI

Simulation Control
Interface

Simulation
Query Interface

Simulation
Commander

control commands

user inputssimulation entities

Fig. 18. User-Simulation interaction components featuring (a) Divas-GUI and
(b) Divas-Visualization

Figure 18 (a) shows the architecture of Divas-GUI. At every

simulation cycle, the updated simulation state received through

the MTS is stored in the GUI Repository and is used to update

displayed simulation statistics (e.g., agent count, objects count)

and control information (e.g., simulation cycle time, simula-

tion cycle number). Users can submit queries about agents

(e.g., find agent #131) or environment objects (e.g., display

information about all buildings in the environment) through

the Simulation Query Interface. In addition, users can use the

Simulation Control Interface to control the simulation (e.g.,

start/stop, pause, save). User’s inputs are converted into control

command messages which are transmitted to the Divas-Core

through the MTS.

Figure 18 (b) shows the architecture of Divas-Visualization.

As in Divas-GUI, updated simulation states received through

the MTS are stored in the VizSimState Repository and are

used to create 2D and 3D representations of the simulated

entities. Through the 2D or 3D visualizer, users can interact

with the simulation at run-time (e.g., trigger an event) or

edit properties of the environment (e.g., add environment

object, edit environment object). User interaction inputs are

converted into user command messages by the Simulation

Commander and transmitted to the Divas-Core through the

MTS as external stimuli messages.

Figure 19 shows the snapshot of a 3D visualizer developed

using the Divas-Visualizer component. The tool box in the

right provides an interface for the user to add virtual agents,

environment objects and trigger events, while the dialog box

in the left allows users to change individual agent properties

at run-time.

Fig. 19. A 3D visualizer created using the DIVAs-Visualization component
showing a 3D visualization of an urban traffic simulation.

A. Illustrative Example: Reusing DIVAs 4.0 Visualizer

To reuse the visualizer, it is necessary to provide models for

the simulated entities. In DIVAs, these models are referred

to as Visualized Objects. In the case of the urban city, we

import 3D models for virtual humans, environment objects

such as buildings, trees and roads, and external events such as

bombs and fireworks. Then we customize the visualizer dialog

panel to visualize human agent properties such as location,

velocity, sense intensity or field of view. As mentioned earlier,

the purpose of the Visualizer Commander is to allow users

of the simulation to trigger predefined external events during

the execution of the simulation. Therefore, it is necessary to

specify what events will be used during the simulation.
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UrbanCity3DVisualizer

VisualisedObjects

<<abstract>>
Divas-Visualisation.(...)::

AgentVO

<<abstract>>
Divas-Visualisation.(...)::

EventVO

<<abstract>>
Divas-Visualisation.(...)::

EnvironmentObjectVO

Editing-System

AgentEditing

Visualizer-Commander

<<abstract>>
Divas-Visualisation.(...)::

AgentPropertyVisualizationDialog

<<abstract>>
Divas-Visualisation.(...)::

AgentPropertyModificationDialog

HumanAgentProperty
VisualizationDialog

HumanAgentProperty
ModificationDialog

<<abstract>>

Divas-Visualisation.(...)::

SimulationAppState

UrbanCitySimulationAppState

UrbanCityVisualisedObjects

<<domain specific>>

HumanAgentVO

EnvironmentObjectVO

EnvironmentEventVO

BombVO

ManAgentVO

WomanAgentVO

BuildingVO
TreeVO

FireworksVO

RoadVO

Fig. 20. Urban City 3D Visualizer

VIII. ILLUSTRATIVE EXAMPLE

In this section, we give a brief overview of the steps necessary

to develop a simple simulator using DIVAs 4.0. The urban

city is an open environment thats consists of buildings, roads,

trees, benches, etc. and includes virtual human agents (see

Figure 21). The virtual agents are capable of perceiving their

surroundings through vision, auditory and olfactory sensors.

They execute complex path-finding and collision avoidance

algorithms to move within the environment. In addition, they

interact with other agents, plan and deliberate to achieve their

goals (e.g., move to location, search for agents).

Fig. 21. Urban City Simulation

In order to develop the urban city simulator, it is necessary

to define concrete implementations of DIVAs-Core.Agent

and DIVAs-Core.Environment. This is achieved by

following the steps discussed in Sections IV-C and

V-C. Then, we integrate DIVAs-Core.Microkernel with

UrbanCityEnvironment bound to the environment template

E (see Section VI). This is followed by the customization and

the integration of the simulation visualizer and the GUI (see

Section VII-A).

A demo on the development and execution of the urban city

simulator is available at http://mavs.utdallas.edu/projects/divas

IX. SCALABILITY EVALUATION

In this section we run the urban simulator discussed in Section

VIII and evaluate the simulation performance with respect

to scalability. The virtual urban city environment consists of

814 environment objects (e.g., commercial buildings, houses,

traffic lights, roads). The environment is partitioned into 64

equally sized cells. Agents are scattered in various areas and

walk randomly in the city.

In order to evaluate the scalability of the simulator, we make

use of the simulation cycle time, i.e., the time elapsed in each

simulation cycle measured in milliseconds. More precisely,

for each set of agents placed in the environment, we record

the average simulation cycle time every 30 seconds. The real-

time requirement for the simulation is 150 milliseconds. This

corresponds to the longest time the visualizer can display the

simulation without delay.

The urban city simulator used to run the experiment was ex-

ecuted on a multicore PC (Intel Core i7 X980 CPU (3.33GHz),

6.00 GB, 64-bit Windows 7) and implemented in Java (version

1.7.0, 64-bit).

0
20
40
60
80

100
120
140
160
180

500 1000 1500 2000 2500 3000 3500 4000 4500

Cy
cl

e 
Ti

m
e 

(m
s)

Number of Agents

Cycle Time Real-time Cycle

Fig. 22. Average simulation cycle time for a 64-cells environment.

The results given in Figure 22 show an increase in the

simulation cycle time as the number of agents augments. This

is to be expected since agents’ execution consumes significant

computational resources. However, the simulator was able

to handle ≈ 4500 virtual agents before reaching the real-

time requirement constraint of 150 milliseconds. The high

number of agents handled by the simulator is the result of

the decentralized structure and control of the environment.

X. CONCLUSION

In this paper we presented DIVAs 4.0, a framework for the

development of large-scale agent-based simulation systems

where agents are situated in open environments. DIVAs pro-

vides architectures and abstract classes for the definition of

agents and open environments, a microkernel for the manage-

ment of the simulation workflow, domain-specific libraries for

the rapid development of simulations, and reusable, extendable

components for the control and visualization of simulations.

We illustrated the use of DIVAs through the development of a
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simple simulator where virtual agents are situated in an open

environment representing a virtual city. The results show that

the simulator is capable of executing a very large number of

agents in simulated real-time.

Even though most of the building blocks for DIVAs 4.0

have been developed, more needs to be done. For example,

new domain specific libraries to be defined; a graphical

agent specification tool has to be developed; and various

environment structures (e.g., self-organizing) need to be

investigated.
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